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• Follow-up

• Test cells & materials

• Task 4 – Laboratory testing

• Summary

OUTLINE
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• Task 1 – Literature review and recommendations

• Task 2 – Tech transfer “state of practice”

• Task 3 – Construction monitoring and reporting

• Task 4 – Laboratory testing

• Task 5 – Performance monitoring and reporting 

• Task 6 – Instrumentation

• Task 7 – Pavement design criteria

• Task 8 & 9 – Draft/final report

Green – Completed

Red – In Progress

FOLLOW-UP
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MATERIALS
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Task 4 - Laboratory Testing

Iowa State University

• Sieve analysis & hydrometer test

• Atterberg limits

• Proctor compaction

• Specific gravity & absorption

• Image analysis

• Asphalt & mortar content determination

• Gyratory compaction & percent crushing

• Contact angle measurement

University of Wisconsin-Madison

• Permeability

• Soil-water characteristic curve

Green – Completed

Red – In Progress

TASK 4
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TASK 4

Gyratory Compaction

• ASTM D6925

• 4500 g of each material

• 100, 300, and 500 gyrations

Parameter Value

Compaction Mold Diameter 6 in (150 mm)

Specimen Height 6 - 7.25 in (150 – 185 mm)

Vertical Applied Pressure 12,530 psf (600 kPa)

Number of Gyrations 100, 300a, 500b

Angle of Gyration 1.25° ± 0.02

Frequency of Gyration 30 ± 0.5 gyrations/min

Number of Dwell Gyrations 2

aIn fact, 299 gyrations (maximum number of gyrations that

can be applied per test) were applied. However, the number

is rounded to 300 for simplicity.
bApplied in two consecutive tests with 250 gyrations each.
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TASK 4

Gyratory Compaction

• Particle morphology change

• Example – Coarse RCA
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TASK 4

Gyratory Compaction

• Particle morphology change

• Example – Coarse RCA
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TASK 4

Gyratory Compaction

• Particle morphology change
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TASK 4

Gyratory Compaction

• Particle morphology change
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TASK 4

Mortar Content

• Freeze-thaw method developed by Abbas et al. 2008

• Test material (oven-dried)

– 1-in and 3/4-in sieves  2000 g each

– 3/8-in and No. 4 sieves  1000 g each

• 26 % (by weight) sodium sulfate solution for 24 hrs

• Five freeze-thaw cycles

– Freezing at −17°C (1.4 °F) for 16 hrs

– Thawing at 80°C (176 °F) for 8 hrs

• Washing over No. 4 sieve & oven drying
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TASK 4

Mortar Content

• Test material

– Example – Coarse RCA

Retained 

on 1-in 

sieve

Retained on 

3/4-in sieve
Retained 

on 3/8-in 

sieve

Retained 

on No. 4 

sieve
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TASK 4

Mortar Content

• 26 % (by weight) sodium sulphate solution

– Saturated solution

Early Stage of Mixing End of MixingPreparation
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TASK 4

Mortar Content

• Five freeze-thaw cycles

– Freezing at −17°C (1.4 °F) for 16 hrs

– Thawing at 80°C (176 °F) for 8 hrs

Freezing Phase Thawing Phase
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TASK 4

Mortar Content

• Five freeze-thaw cycles

After five cycles Disintegration of Mortar
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TASK 4

Mortar Content

• Washing over No. 4 sieve & oven drying

Mixture of Disintegrated Mortar and Aggregates
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TASK 4

Mortar Content

Material Mortar Content (%)

Coarse RCA 33.4

Fine RCA 29.6

Limestone 1.3

RCA+RAP 20.1

Class 6 Aggregate 25.6

Class 5Q Aggregate 37.1

Before Test After Test
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TASK 4

Water Repellency

• Apparent water contact angle (°)

– At zero energy state of water

• Water drop penetration time (WDPT)

– Time required for a water drop to completely infiltrate the material

(Mandal and Jayaprakash 2009)http://www.ramehart.com/contactangle.htm

http://www.ramehart.com/contactangle.htm
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TASK 4

Water Repellency

Coarse RCA Fine RCA Limestone
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TASK 4

Water Repellency

RCA+RAP Class 6 Aggregate Class 5Q Aggregate
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TASK 4

Water Repellency

Material
Apparent Contact 

Angle (°)

Water Drop 

Penetration Time 

(WDPT) (s)

Water Repellency

Coarse RCA ~ 0 < 5 Wettable (Hydrophilic)

Fine RCA ~ 0 < 5 Wettable (Hydrophilic)

Limestone ~ 0 < 5 Wettable (Hydrophilic)

RCA+RAP ~ 83 > 3600 Water Repellent (Hydrophobic)

Class 6 Aggregate ~ 86 > 3600 Water Repellent (Hydrophobic)

Class 5Q Aggregate ~ 0 < 5 Wettable (Hydrophilic)
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TASK 4

Permeability Test

• ASTM 5084 – Flexible wall permeameter

– Constant head permeability test (method A)

– Falling head permeability test (method C)

https://slideplayer.com/slide/6104388/
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TASK 4

Constant Head Permeability Test

• 6-in diameter and 4-in height specimens

– Materials passing 3/4-in sieve

• In the membrane by light hammering

Test Setup Test Specimen
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TASK 4

Constant Head Permeability Test

DOC = Degree of compaction
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TASK 4

Falling Head Permeability Test

• 6-in diameter and 4-in height specimens

– Materials passing 3/4-in sieve

• In the compaction mold (5 layers)

Test Setup Test Specimen
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TASK 4

Falling Head Permeability Test

DOC = Degree of compaction
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TASK 4

Falling Head Permeability Test

• Degree of compaction
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TASK 4

Soil-Water Characteristic Curve (SWCC)

• ASTM D6836

– Hanging column test

– Pressure plate and activity meter test
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TASK 4

Hanging Column Test
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TASK 4

Hanging Column Test

Glass Funnel Horizontal Tube Manometers
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TASK 4

Hanging Column Test

• van Genuchten (1980) model 

Θ =
θ − θr

θs − θr
=

1

1 + αψ n

m Θ = Normalized volumetric water content

θ = Soil volumetric water content

θr = Residual volumetric water content

θs = Saturated volumetric water content

Ψ = Matric suction

α, n, and m = van Genuchten fitting parameters 
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TASK 4

Hanging Column Test
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TASK 4

Hanging Column Test
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TASK 4

Hanging Column Test

Cementation of Fine RCA
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TASK 4

Single-Specimen Pressure Chambers Activity Meter DeviceTest Specimen

Pressure Plate and Activity Meter Test

• Pressure Plate

– 3-in diameter and 1-in height specimens

– Materials passing 3/8-in sieve

– Suction values up to 220 psi (1500 kPa)

• Activity Meter

– Materials passing No. 10 sieve

– Higher suction
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TASK 4

Pressure Plate and Activity Meter Test

• van Genuchten (1980) model 

Θ =
θ − θr

θs − θr
=

1

1 + αψ n

m Θ = Normalized volumetric water content

θ = Soil volumetric water content

θr = Residual volumetric water content

θs = Saturated volumetric water content

Ψ = Matric suction

α, n, and m = van Genuchten fitting parameters 
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TASK 4

Pressure Plate and Activity Meter Test
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TASK 4

Pressure Plate and Activity Meter Test
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TASK 4

Pressure Plate and Activity Meter Test

• Degree of compaction
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TASK 4

Pressure Plate and Activity Meter Test

• Degree of compaction
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• Particle morphology change due to compaction

– Increase in sphericity

– Increase in roundness

• Mortar content

– Class 5Q aggregate > coarse RCA > fine RCA > class 6 aggregate > 

RCA+RAP > limestone

• Water repellency

– Hydrophilic  coarse RCA, fine RCA, limestone, class 5Q aggregate

– Hydrophobic  RCA+RAP & class 6 aggregate 

• Constant head permeability

– Insufficient compaction by light hammering in the membrane

– Fine RCA > limestone, class 6 aggregate, & class 5Q aggregate > coarse 

RCA & RCA+RAP

SUMMARY
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• Falling head permeability

– Coarse RCA, fine RCA, & RCA+RAP > limestone

• Falling head permeability – different DOC

– DOC ↓ permeability ↑

– Fine RCA > coarse RCA

• Hanging column test (for SWCC)

– Lower suctions

– Not suitable for RCA - cementation

• Pressure plate and activity meter test (for SWCC)

– Higher suctions

– DOC ↓ initial VWC ↑

SUMMARY
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• Coarse RCA & class 5Q aggregate may performance problems

– Higher breakage potential

– Higher total breakage

– Decrease in permeability

– High potential for tufa formation

• RCA materials likely attract more water

– Mortar content

– Higher water absorption

– Hydrophilicity

– Decrease in F-T resistance

DISCUSSION
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• Task 5 – Performance monitoring and reporting

• Task 6 – Instrumentation

FUTURE STUDY
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Thank You!

QUESTIONS??
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TASK 4

Mortar Content

• 26 % (by weight) sodium sulphate solution

– Saturated solution

Salt Cake Salt Formation


