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 DCP Data Analysis

OUTLINE
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LITERATURE REVIEW
• Introduction

– Pavement Systems
– Recycled Materials in Pavements
– Large-Size Natural Materials in Pavements
– Geosynthetic Applications
– Research Motivation/General Purposes

• Engineering Properties
– Gradation
– Compaction
– Hydraulic Conductivity
– Strength (CBR & LBR)
– Shear Strength 
– Stiffness (Mr)
– Permanent Deformation
– Creep Deformation
– F-T & W-D Durability
– Temperature Effects
– Impurities
– Geosynthetics

• Environmental Properties
– pH Characteristics & Alkalinity
– Leaching Characteristics

• Design Methods
• Construction Specifications & Practices
• Conclusions

Design Methods
• AASHTO 1993
• MEPDG Design

Construction Specifications &
Practices
• MnDOT
• CalTrans
• MDOT
• MoDOT
• IDOT
• WisDOT
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LITERATURE REVIEW
Shear Strength
• RAP & RCA ≤ Natural dense-graded aggregate (LRRB 2016)

• RAP content ↑, shear strength ↓ (McGarrah 2007)

• Shear strength of RCA ↑ with time (Edil et al. 2012)

(Thakur and Han 2015)
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LITERATURE REVIEW
Stiffness
• RAP & RCA content ↑, Mr ↑ (LRRB 2016; Bennert et al. 2000)

• RCA angularity ↑, Mr ↑ (Edil et al. 2012; Stolle et al. 2009)

• Rough RCA surface texture, Mr ↑ (FHWA 2008)

• Rehydration of cement

(Thakur and Han 2015) (Edil et al. 2012)
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LITERATURE REVIEW
Permanent Deformation
• Least deformation  RCA (LRRB 2016; Edil et al. 2012)

• RAP content ↑, deformation ↑ (Kim and Labuz 2007)

• Progressive breakdown (Bennert et al. 2000)

(Thakur and Han 2015) (Edil et al. 2012)
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LITERATURE REVIEW
Permanent Deformation
• Type C  3-6” aggregates (Kazmee et al. 2016)

• Mobilization of large aggregates
• Open-graded large-size aggregates  large voids 

particle movement
reorientation

(Kazmee et al. 2016)

Red Surface
Green Aggregate subgrade
Black  Engineered subgrade
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LITERATURE REVIEW
Creep Deformation
• RAP  high creep potential (Thakur and Han 2015)

• RAP content ↑, creep deformation ↑ (Cosentino et al. 2003)

• RAP + soil mixture  creep control (Cosentino et al. 2003)

(Thakur and Han 2015)
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LITERATURE REVIEW
Freeze-Thaw Durability
• RAP  more stable after 5 F-T cycles (Bozyurt et al. 2013)

• RAP SRM still > Class 5
• Mr may increase

Water loss due to hydrophobicity 
(Attia and Abdelrahman 2010)

(Bozyurt et al. 2013)
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LITERATURE REVIEW
Freeze-Thaw Durability
• RCA  increase after 5 cycles (Bozyurt et al. 2013)

• Self-cementing (Poon et al. 2006)

• Fine generation over time
• Porosity ↑, F-T effect ↓ (Rosa et al. 2017)

(Bozyurt et al. 2013)
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LITERATURE REVIEW
Wet-Dry Durability
• RAP & RCA  Higher Micro-Deval losses than Class 5 (Bozyurt 2011)

• Loss of fines  to the bottom
• W-D cycles ↑, fine content ↑

• RAPs were more intact
• Cohesion
• Asphalt at 50°C

(Edil et al. 2012) (Edil et al. 2012)
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PERMEAMETER DATA ANALYSIS

Concept (White et al. 2010)

• Variability of in-situ permeability – up to 400%
• Gas permeameter test (GPT)
• Rapid (< 30 sec) and portable (16 kg)

• Self-contained pressurized gas system
• Self sealing base plate 



Slide 16Iowa State University University of Wisconsin-Madison 16

PERMEAMETER DATA ANALYSIS

Concept (White et al. 2010)

Where;

Ksat = saturated hydraulic conductivity (cm/s)
Kgas = gas permeability
Krg = relative permeability to gas
μgas = kinematic viscosity of the gas (PaS)
Q = volumetric flow rate (cm3/s)
P1 = absolute gas pressure on the soil surface;

[P1 (Pa) = Po(g) (mm of H2O) x 250 + 101325]
Po(g) = gauge pressure at the orifice outlet (mm of H2O)
P2 = atmospheric pressure (Pa)
r = radius at the outlet (4.45 cm)
Go= Geometric factor (dimensionless factor see Figure 7)
Se = effective water saturation [Se = (S – Sr)/(1-Sr)]
λ = Brooks-Corey pore size distribution index
Sr = residual water saturation
S = water saturation
ρ = density of water (g/sm3)
g = acceleration due to gravity (cm/s2)
μwater = absolute viscosity of water (gm/cm-s)
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PERMEAMETER DATA ANALYSIS

Concept (White et al. 2010)

• S  from in-situ dry unit weight and moisture content
• Sr and λ  from soil water characteristic curves (SWCC)
• SWCC  need to know gradation

(Likos et al. 2013)

• af, bf, cf, and ψr  SWCC curve fitting
parameters correlated with material
gradation properties

• SWCC parameters were derived and then Sr and λ values were calculated 
using the Brooks and Corey (35) approach.
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PERMEAMETER DATA ANALYSIS

Concept (White et al. 2010)

• Typical Sr and λ values (alternative) 
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PERMEAMETER DATA ANALYSIS

Data Analysis
185-0 (A) Wet Density, γm (pcf) Moisture, w (%) Dry Density, γd (pcf)

Date: P2 (inches of H2O) Q (CFH) Base 114.9 8.9 105.51
Location: 1st Reading 3.89 1083 0.089
Test Number: 2nd Reading 3.89 622
Orifice: 3rd Reading 2.81 390
Material: 4th Reading 1.83 264

Initial Values:
Initial P1: PSIG (1)
Initial P2: inches of H2O (2)
Initial Q: CFH (3)
GPT Readings:
Gas Used:
GPT orrifice dia: μm
1st Reading Corrected 1st Reading
P1: PSIG (4) P1: PSIG (7)  =(4)-(1)
P2: inches of H2O (5) P2: inches of H2O (8)  =(5)-(2)
Q: CFH (6) Q: CFH (9)  =(6)-(3)
2nd Reading Corrected 2nd Reading
P1: PSIG (10) P1: PSIG (13)  =(10)-(1)
P2: inches of H2O (11) P2: inches of H2O (14)  =(11)-(2)
Q: CFH (12) Q: CFH (15)  =(12)-(3)
3rd Reading Corrected 3rd Reading
P1: PSIG (16) P1: PSIG (19)  =(16)-(1)
P2: inches of H2O (17) P2: inches of H2O (20  )=(17)-(2) in cm
Q: CFH (18) Q: CFH (21)  =(18)-(3) Thickness 12 30.48
4th Reading Corrected 4th Reading
P1: PSIG (22) P1: PSIG (25)  =(22)-(1)
P2: inches of H2O (23) P2: inches of H2O (26)  =(23)-(2)
Q: CFH (24) Q: CFH (27)  =(24)-(3)
Develop P2 vs. Q relationship and determine Q at a desired P2 value.
[For example, P2 = 1 in of H2O]
P2: inches of H2O (28)
Q: CFH (29)
Density and Layer Thickness Measurements:
Dry Density, γd: pcf (30)
Moisture, w: in decimals (31)
Sp.Gr., Gs: (32)  Assume 2.70 if unknown
Saturation, S: (33)  =[(32)*(31)]/{[(32)*62.4/(30)]-1}
Thickness, L: cm (34)
Ksat Calculation Parameters:
μgas: Pas (35)  (CO2: 1.48E-05, Air: 1.83E-05, Nitrogen: 1.78E-05)
P1: Pa (36)  = (28)*250+101325
P2: Pa (37)
Q: cm3/s (38)  =(29)*7.86579
r: cm (39)
G0: (40)  Determine using Figure 2 based on (34)
ρ: g/cc (41)
μwater: g/cm-s (42)
g: cm/s2 (43)
Sr: (44)  Determine based on soil type from Table 2
Se: (45)  =[(33)-(44)]/[1-(44)]
λ: (46)  Determine based on soil type from Table 2
Ksat Calculation:
Ksat: cm/s (47)
Ksat: ft/day (48)  =(47)*2834.6-1158.1

0.01
981

0.035
0.38
4.135

-0.41

101575
101325
-346.6
4.45
4.7
1

105.51
0.089

2.7
0.40
30.48

1.83E-05

1.83 1.83
264 264

1.00
-44.07

2.81 2.81
390 390

10 10

3.89 3.89
622 622

20 20

1083 1083

40 40

0.00
0.00
0.00

Air
870.95

80

SAMPLE DATA SHEET
08.01.2017

185-0
A

GPT(B)
5QC

80
3.89 3.89

GPT(A) – orifice diameter = 2982.00 μm
GPT(B) – orifice diameter = 870.95 μm
GPT(C) – orifice diameter = 293.66 μm
GPT(D) – orifice diameter = 149.41 μm

y = 301.1x - 345.17
R² = 0.684

0

200

400
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800

1000

1200

0 1 2 3 4 5
Q

 (C
FH

)
P2 (inches of H2O)

P2 vs. Q relationship
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PERMEAMETER DATA ANALYSIS

Data Analysis
-0 -25 -50 -75 -100 -125 -150 -175

A -0.41 1.27 - 6.76 2.89 - 3.91 3.57
B 2.72 4.88 13.36 14.07 62.54 24.28 4.86 4.58
C 4.36 1.51 11.16 4.36 18.38 5.17 0.68 -1.87
D 3.97 1.29 2.83 11.86 11.64 5.44 -85.3 -1.5

Cell

185

Saturated Hydraulic Conductivity (cm/s) - 08.01.2017

+25 +50 +75
A 0.25 0.42 0.42
B 0.57 1.05 0.97
C 0.74 3.25 0.77
D 2.04 2.26 3.2
A 0.68 0.57 0.46
B 0.58 0.38 0.25
C 0.36 0.25 0.83
D 0.71 0.28 0.46
A 0.46 0.17 0.26
B 0.36 0.28 0.75
C 0.17 0.1 0.75
D 0.41 0.31 0.51
A 0.57 2.33 2.52
B 0.32 0.91 5.92
C 0.6 1.22 1.53
D 0.29 0.29 0.48

Cell

185

Saturated Hydraulic Conductivity (cm/s) - 08.08.2017

188

189

186
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PERMEAMETER DATA ANALYSIS

Data Analysis
Effect of Compaction

• Same dry density and 
moisture content values 
were used for before-after 
compaction condition.

• More info is needed.
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Concept (Vennapusa and White 2009)

LWD DATA ANALYSIS
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LWD DATA ANALYSIS
Data Analysis

133 138 238 139 239

55-58 124-624 185 186 87 188 189 127 227 328 428 528 628 728 77 78 79 31 32 52 53 54

Low Volume Road
MnROAD

240235 36 37233 135 140 46
45

44

43
42

41

S1 (µm) 825 S1 (mm) 0.825 S1 (µm) 606 S1 (mm) 0.606
S2 (µm) 846 S2 (mm) 0.846 S2 (µm) 592 S2 (mm) 0.592
S3 (µm) 819 S3 (mm) 0.819 S3 (µm) 589 S3 (mm) 0.589

Save (µm) 830.0 Save (mm) 0.83 Save (µm) 595.7 Save (mm) 0.59567
Evd (MPa) - Evd (MPa) -

Plate diameter (mm) 200 Plate diameter (mm) 200
Poisson's ratio, v 0.4 Poisson's ratio, v 0.4

Shape factor, f 2 Shape factor, f 2
Falling weight, m (kg) 10 Falling weight, m (kg) 10

Drop height, h (m) 0.5 Drop height, h (m) 0.5
C (N/m) 362396 C (N/m) 362396

Contact area, A (m2) 0.031 Contact area, A (m2) 0.031
Applied force, F (Pa) 5962.47 Applied force, F (Pa) 5962.47

Applied stress, σ0 (Pa) 189791 Applied stress, σ0 (Pa) 189791
Applied stress, σ0 (MPa) 0.18979 Applied stress, σ0 (MPa) 0.18979
Elastic modulus, E (MPa) 38.42 Elastic modulus, E (MPa) 53.53

328 - Outside 328 - Inside
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LWD DATA ANALYSIS

Outside Inside
328 38.42 53.53
428 23.18 43.88
528 16.96 19.91
628 31.57 36.62

Elastic modulus, E (MPa)Cell 
Number

LWD Test - 09.19.2017

LWD Test – 328-628 - 09.19.2017
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LWD DATA ANALYSIS
LWD Test – 08.21.2017

• Cell numbers are required.
• Roadway Lane and Offset: Given as -10 or +10. Which one is outside/inside?

Elastic modulus,
E (MPa)

Evd (MPa) Elastic modulus,
E (MPa)

Evd (MPa)

-10 -10 +10 +10
18300 40.46 38.07 24.77 23.3
18400 - - 26.48 24.9
18500 31.32 29.5 15.06 14.2
18550 46.14 43.4 39.84 37.5

Station

LWD Test - 08.21.2017

Elastic modulus,
E (MPa)

Evd (MPa) Elastic modulus,
E (MPa)

Evd (MPa)

-10 -10 +10 +10
17930 61.4 57.8 44.68 42.02
17980 57.48 54.1 55.97 52.6
18150 48.26 45.3 50.56 47.5
18250 38.85 36.5 27.35 25.7

LWD Test - 08.21.2017

Station

Elastic modulus,
E (MPa)

Evd (MPa) Elastic modulus,
E (MPa)

Evd (MPa)

-10 -10 +10 +10
17630 58.79 55.35 62.68 58.9
17680 55.39 52.1 53.47 50.3
17730 53.89 50.7 71.07 66.8
17880 62.56 58.8 65.07 61.2

LWD Test - 08.21.2017

Station
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LWD DATA ANALYSIS
LWD Test – 01.24.2018 - UTEP

• Information about the LWD is needed, i.e., plate diameter, drop 
height, mass.
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LWD DATA ANALYSIS
LWD Test – 01.24.2018 - UTEP

• Information about the LWD is needed, i.e., plate diameter, drop 
height, mass.
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LWD DATA ANALYSIS
LWD Test – 01.24.2018 - UTEP

• Information about the LWD is needed, i.e., plate diameter, drop 
height, mass.
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LWD DATA ANALYSIS
LWD Test – 01.24.2018 - UTEP

• Information about the LWD is needed, i.e., plate 
diameter, drop height, mass.
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DCP Test – 328 - 09.18.2017

DCP DATA ANALYSIS
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DCP Test – 428 - 09.18.2017

DCP DATA ANALYSIS
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DCP Test – 528 - 09.18.2017

DCP DATA ANALYSIS
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DCP Test – 628 - 09.18.2017

DCP DATA ANALYSIS
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DCP Test – 18300 – 08.21.2017 (Example)

DCP DATA ANALYSIS

• Cell numbers are needed.
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DCP DATA ANALYSIS
DCP Test – 01.24.2018 – UTEP (Example 188 A)
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SUMMARY
Permeameter
• Compaction effort reduced the Ksat.
• Some negative Ksat values were calculated due to some errors related to 

obtained P2 values.
• Gradation – compaction (before/after compaction) data are required for 

more accurate analyses.

LWD & DCP
• Inside lane has higher elastic modulus.
• Cell numbers are required for the LWD & DCP data taken on 08.21.2017.
• Meaning of -10 & +10 should be provided (inside or outside).
• LWD specs (plate diameter, drop height, mass) are required for the data 

taken by UTEP (01.24.2018).
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SCHEDULE
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Thank You!

QUESTIONS??
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