

Minnesota Department of Transportation

Memo

Office of Materials Office Tel: 1400 Gervais Avenue, Mail Stop 645 Fax: Maplewood, MN 55109 TO: File: Research on RAP Activation and Blending FROM: Mark Watson **Research Project Engineer** DATE: 4 November, 2009

Blending of RAP with Virgin Aggregates (No add AC) SUBJECT:

Introduction:

This memo describes the RAP mixing experiment which consisted of blending different proportions of RAP with virgin aggregate at different temperatures and no additional liquid AC.

The experiment took place the morning of Wednesday, November 4, 2009 at the Crane Creek Asphalt (A division of Mathy Construction) Plant No. 84 shown in Figure 1 and located at 680 NW 24th St in Faribault Mn. This three tier batch mix plant is equipped with 6 virgin aggregate belt feed bins and 1 RAP belt feed bin. The mixing unit is a twin pugmill type with $< \frac{3}{4}$ " clearance from the walls and timer controls for wet and dry mixing.

Figure 1. Crane Creek Asphalt Plant No. 84, Faribault, Mn.

The RAP was sampled from millings obtained from TH 60 and blended with four types of virgin aggregates as shown in Table 1.

651/366-5596 651/366-5461

Pit	Source of Material	TOTAL	Minus #4	
		Sp. G	% Passing	Sp. G
66110	NELSON ¾" ROCK	2.712	3	2.712
19123	CASTLE ROCK 1/2" X #4	2.675	3	2.675
19123	CASTLE ROCK MAN SAND	2.627	25	2.627
66110	NELSON NAT SAND	2.612	23	2.612
	TH 60 MILLINGS	2.663	18	2.663

 Table 1. RAP and Virgin Aggregate Properties

The virgin aggregate and RAP were blended in a single batch as shown in **Error! Reference source not found.** Various plant temperatures, measured at the point of discharge and RAP contents that were used are shown in Table 2. Note that temperature was also measured at the point of sampling.

Figure 2. Batch Size

Run No. Plant Temp		RAP Content	Dwell Time	Sample Temp.	
	(° F)	(%)	(Sec.)	(° F)	
1	420	10	30	320 (Front) - 344 (Back)	
2	490	24	30	290 - 300	
$3(1^{st} 1/2)$	400	24	30	230 (Front)	
$3.5(2^{nd} 1/2)$	375	24	30	225 (Back)	

Figure 3. Iteration (Run) No 1.

Figure 4. Iteration (Run) No 2.

Figure 5. Iteration (Run) No 3.

Samples:

- 3, <mark>5 gal.</mark> steel pails of each iteration (run no.)
- 2, 5 gal pails of virgin aggregate material (Castle Rock + Nelson Sand)
- 1, 5 gal pail of Nelson ³/₄" Rock

- 2, 5 gal pails of RAP material (TH 60 Millings)
- 2, sealed plastic bags of RAP material (TH 60 Millings)
- 1 sealed plastic bag of crushed millings (Not used in the mixing experiment)

Figure 6. From LT to RT Iteration (Run) 3, 2 and 1.

Observations:

- Recycled binder clumped around fines and formed 'balls'
- RAP binder appeared to activate in all iterations
- Higher concentrations of RAP yielded noticeably more binder activation
- Higher temperatures yielded greater activation (blending) of the recycled binder

p.2

						i		
			Minnesota i Dir 29 Ro Pi	Department of T Strict 6 Materials 200 48th Straet I Schester, MN 55 10ne: 507-286-7	Lab NW 903 586	Date	-2009-141 8/11/2009	
	THIS MIX DESIGN		OT VALID UNTIL PLANT NO. IND	ICATED BELOW IS	S CERTIFIED,	SPEC	2360 AFT	
	and the second se	KYLE LAKE		FOR TH 60		SPEC YEAR	2009	٦
	PROJECT NI CONTRACTO		6606-34				SPWEB340	7
	CONTRACTO	JK SIGN,				1		-
			VIEWED FOR VOLUMETRIC PRO MENT AND COMPACTION REQUI	PERTIES ONLY, IT REMENTS HAVE B	DOES NOT	AC	PG 58-28	
	PLANT N	10.	6-2784 -	2009A	JOB MIX FOI			
	Begin With Te	est Number	Sieve Size	Composite			- · · ·	
<i>e</i> .	SP WE	301	(mm) (in.)	Formula	Broad Band		For Information O Virgin Formula	nly 1
			25.0 (1) 19.0 (3/4) 12.5 (1/2) 9.5 (3/8)	<u>100</u> <u>87</u> 79	$ \begin{array}{r} - \\ 100 - 100 \\ 85 - 100 \\ \end{array} $		рр 6 А	
	AFT Prop		4.75 (#4) 2.36 (#8)	<u>69</u> 67	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		R S C S E I	
		4.8	<u>1.18 (#16)</u> 0.600 (#30)	<u>45</u> 33			N N T G	-
	SA	28,9	0.300 (#50)	15				
	Adj. AFT	8,7	0.150 (#100)	6				4
	HC = 5.6		0.075 (#200) Spec. Volds	4.3	2.0 - 7.0 3.0 - 5.0		%AC	
Add	HC = 5.6 AC = 4.4		4.1 ald	5.6 (TOTAL)	5.2		(NEW)	
6 4 10	IN # 6-2009-21	indicates a	GVIATORY Density of 149 2	(158/ft3) at 60 F	Jesian Gyrations			
	Use of anti-strip	p required:	No					
ກາສັ	Pit 25 % 66110		Source of	Material		Total Sp. G	Minus #4	
228	25 % 19123		3/4" ROCK			2.712	<u>% Passing</u> Sp. 3 % 2.7	6 12
× 28	25 % 66110		ROCK MAN SAND			2.627		27
ý 3×	25 %	TH 60 MI				2.612	23 % 2.6	
41	%				1	2.663	18 % 2.6	
1	9%	1 Due	to be to			1 11	A/ 1	

- Site			Source of Material	10(8)	Minus	#4
2322		66110	NELSON 3/4" ROCK	<u>\$p, G</u>	% Passing	Sp. G
28 28		<u>19123</u>	CASTLE ROCK MAN SAND	2.712	3 %	2.712
22 38	25 %		NELSON NAT. SAND	2.627	25 %	2.627
24 3	25 %		TH 60 MILLINGS	2.612	23 %	2.612
M I	%			2.663	18 %	2,663
	%		Dust out		%	
	%				%	
	%				%	
		Mi	x Aggregate Specific Gravity at the Listed Percentages =		%	
	FORLAR			2.653		2.634
	Remarks	ADDITIC	TION ONLY: LAB COMPACTION TEMP. RANGE = 288-295 "F			

Marks [ADDITIONAL QUALITIES TO BE TAKEN AT TIME OF PRODUCTIONI

133

1

Mix Design Reviewed by:

Mix Deaign Specialist 08-2009-141 Ver. 1 cc: Dist Mat'ls Eng. - Tom Meath Contractor - MATHY/CCA #2 KYLE LAKE

	VALID UNTIL PLANT NO. IN	Fax: 507-285-71	586 12	SPEC	2360 AFT
ENGINEER CHAD CASEY			GERIFIED,	SPEC YEAR	
PROJECT NUMBER SP 660	07-42	FOR TH 60		MIX TYPE	2009
CONTRACTOR SIGN.	ч / тт С				SPWEB440
		Lise of			
THIS MIXTURE HAS BEEN REVIE	WED FOR VOLUMETRIC PR	RODERTICS ONLY IT	DOES NOT		PG 64-34
ASSURE THAT FIELD PLACEMEN	IT AND COMPACTION REQ	UREMENTS HAVE B	EEN MET.	GRADE	
PLANT NO.	6-2784 -	2009A	JOB MIX FO	RMULA	
Begin With Test Number	Sieve Size	Composite	1		For information O
SP WE 401	(mm) (ln.)	Formula	Broad Band	X	Virgiti Formula
	<u>25.0 (1)</u> 19.0 (3/4)	100			
-	12.5 (1/2)	95	100 - 100	· ·	P P
	9.5 (3/8)	82	<u>85</u> - <u>100</u> 35 - 90		E A
ACT Descention	4,75 (#4)	68	30 - 80		R S C S
AFT Properties	2.36 (#8)	55	25 - 65		E 1
Pbe 4.6	1.18 (#16)	42			
SA 27.7	0.600 (#30)	33		i	
Adj. AFT 8.5	0,300 (#50)	15			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,150 (#100)				
al Acr 5.2°10. Acr 4, 7 %	0,075 (#200) Spec. Volds	3.4	2.0 - 7.0 3.0 - 5.0		%AC

**ичч**и.

1201 VU (7 VU )

TM # 6-2009-32 Indicates a Gyratory Density of 148.6 (iba/ft3) at 90 Design Gyrations Use of anti-strip required: No

. **>	Pit	Source of Material	Total	Minus #4
13	13 % 66110	NELSON 3/4" ROCK	Sp. G	% Passing Sp. G
16 2	15 % 19123	CASTLE ROCK 1/2" X #4	2,712	4 % 2.712
46	45 % 19123		2.675	3 % 2.675
15 15	12 % 66110		2.627	100 % 2.627
10 10	T5. %	BMI MILLINGS	2.613	90 % 2,613
<i>.</i>	. %		2,645	74 % 2,645
	%			%
l L	%			%
	١	Mix Aggregate Specific Gravity at the Listed Percentages =		%
			2.646	2.629
F	FOR LAB INFORM	ATION ONLY: LAB COMPACTION TEMP. RANGE = 265-275 °F		harry and the second second

Remarke ADDITIONAL QUALITIES TO BE TAKEN AT TIME OF PRODUCTION!

Mix Design Reviewed by:

06-2009-138 Var 1

- - -

-----

لناجع Ken D me Mix Design Specialist

cc; Dist Mat'ls Eng. - Tom Meath Contractor - MATHY/CCA #2