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Abstract 

Uniform deformation is a basic assumption in element testing, where axial strain typically is determined 

from displacement measurements δi.  In applying force or displacement, however, some rotation of the 

loading platen may occur such that the fundamental stress field is perturbed by bending.  Thus, non-

uniformity among measures of axial deformation may be present, and the response may consist of a 

component due to the axial force and a component due to the bending moment.  To estimate this non-

uniformity during an element test, at least three sensors are needed, and for equi-angular placement, it is 

shown that the mean of the displacement readings is equal to the displacement from the axial force; the 

rotation does not affect the mean value.  Furthermore, the ratio of the maximum and minimum δi does 

not provide an objective evaluation of uniformity, but it is reasonable to limit the degree of rotation. 
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Introduction 

An element test assumes that the material deforms in a uniform manner.  For example, a specimen that is 

originally cylindrical in shape remains a cylinder during testing.  Ideally, the kinematic boundary 

condition imposed by a rigid platen means that the loading platen should not rotate but remain normal to 

the longitudinal axis of the specimen.  However, some rotation is typically allowed and when multiple 

displacement measurements are compared, non-uniformity between readings is inevitable.  In this paper, 

the degree of non-uniformity due to rotation is quantified, and the relation between the degree of non-

uniformity and the specimen deformation is discussed to evaluate the influence of rotation on the 

measured displacements (Fig. 1). 
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The work is motivated by the resilient modulus (MR) test, conducted to measure the stiffness of 

base and sub-grade soils of the pavement structure [1].  The resilient modulus can be thought of as 

Young’s modulus based on the recoverable strain under repeatable axial stress.  Two test protocols are 

commonly used: (a) Long Term Pavement Program (LTTP) P46 by the Strategic Highway Research 

Program (SHRP) [2], and (b) National Cooperative Highway Research Program (NCHRP) 1-28A [3].  In 

both protocols, repeated cycles of axial stress are applied to a specimen at a given confining pressure 

within a conventional triaxial cell.  Each cycle is 1 s in duration, consisting of a 0.1 or 0.2 s haversine 

pulse followed by a 0.9 or 0.8 s rest period for coarse- or fine-grained soils. 

During a resilient modulus test, force and displacement data for each sequence are collected, and 

the MR is calculated from 

 a
R

a
M σ

ε
Δ

=
Δ

       (1) 

where Δσa = cyclic axial (deviator) stress and Δεa = recoverable axial strain.  In detail, 
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where = cyclic axial force, A = cross sectional area, = average elastic (recoverable) axial 

displacement and = original gage length.  Since axial strain is determined from axial displacement, it 

is important to measure it accurately. 
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Displacement readings are usually obtained from linear variable differential transformers or 

LVDTs [4,5].  For the MR test, three LVDTs should be placed at equi-angular positions around two 

parallel aluminum collars, which are attached to the specimen (Fig. 2).  On the lower collar, columns are 

mounted below the LVDTs as contacts for the spring-loaded tips of the sensors.  This arrangement allows 

the two collars to move independently of each other.  Spacers maintain a parallel distance (gage length) 

between the collars while the apparatus is placed on the specimen. 
 

Non-uniformity of Displacement 

MR test data typically display non-uniform displacement histories between three LVDT readings during 

the loading sequences (Fig. 3).  Because the MR value is calculated from the axial displacement of a 

specimen during cyclic loading, it is critical to have reliable displacement values from at least three 

LVDTs (two LVDTs are not sufficient to evaluate the non-uniformity). 

Consider the boundary condition imposed by a rigid platen that can rotate (Fig. 1).  The 
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distribution of normal stress varies and the resultant is composed of an axial force and a bending moment.  

Thus, the total displacement can be decomposed into  

 

δ(i) =δ(i)F+δ(i)M             (4) 

where  

δ(i)   = total displacement of LVDT ‘i’ 

δ(i)F  = displacement of LVDT ‘i’due to the axial force 

δ(i)M  = displacement of LVDT ‘i’due to the bending moment 

 

Displacement due to the axial force (δF) will be the same for the three LVDTs.  However, 

displacement due to the bending moment (δM) will depend on the angle of rotation of the platen (θ) and 

the position of the LVDT relative to the axis of rotation (Fig. 4).  To describe the rotated plane, consider 

three LVDTs positioned at equi-angular positions, 120° apart.  Because the axis of rotation is assumed to 

go through the center of the specimen, displacement of each LVDT due to the bending moment will be 

decided by the position of the LVDT in relation to the axis of rotation.  If an LVDT is on the axis of 

rotation, displacement due to bending moment is zero, and total displacement will be the same as axial 

displacement.  If an LVDT is located on a line perpendicular to the axis of rotation, displacement due to 

the bending moment will be either maximum δmax or minimum δmin (Fig. 4). 

For a cylindrical specimen of radius R, define angles α, β, and χ as the angles between a line 

from the center of the specimen to each LVDT and the axis of rotation such that the location of δmin is 

between LVDT1 and LVDT2.  Therefore, the displacements of the three LVDTs are 

δ1 = δF – R sin(α) sin(θ)         (5) 

     δ2 = δF – R sin(β) sin(θ)        

δ3 = δF + R sin(χ) sin(θ) 

and the sum is 

δ1 + δ2 + δ3 = 3δF – R sin(θ) (sin(α)+sin(β)-sin(χ))        (6) 

 

For equi-angular placement of the three LVDTs, the last term in equation (6) becomes 

sin(α) + sin(β) – sin(χ) = sin(α) + sin(60°-α) - sin(120°-α) = 0  (7) 

From equations (6) and (7), 

δF= (δ1 + δ2 + δ3)/3 = δaverage          (8) 
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Consequently, the displacement due to axial force, even if rotation occurs, is simply the mean of the 

displacement values from the three LVDTs.  This means that the angle of rotation does not affect the 

value of the axial displacement for stiffness calculations.  This does not mean that the angle of rotation 

should not be limited, as the assumption of uniform deformation may be violated as rotation increases. 

 

Angle of Rotation 

To estimate the angle of rotation, note that θ is the angle between the normal vectors of the plane before 

loading (the horizontal plane) and the rotated plane, defined by the (minimum) three LVDT displacement 

values.  Recalling that a plane is described by 

 Ax + By + Cz + D = 0 (9) 

the angle between the normals of the two planes is [6] 
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In addition, a plane passing through three points Pi (xi, yi, zi), Pj (xj, yj, zj), Pk (xk, yk, zk) is determined by 
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The plane before loading is the horizontal plane:  

z = 0 (12) 

The plane at a particular load is defined by the three LVDT readings: 
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Thus, the equation of the rotated plane at a particular load is  
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Substituting equations (12) and (16) into equation (10), the angle of rotation θ  is 
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The axis of rotation is the line of intersection of the rotated plane with the horizontal plane, with 
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The equation for the intersection of two planes in the xy plane is [6] 
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Substituting equations (16) and (18) into equation (19) results in the equation for the axis of rotation: 
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In summary, from three sensors placed equi-angular to measure axial displacement, the angle of rotation 

and the position of the axis of rotation can be calculated. 

 

Uniformity Ratio 

In NCHRP 1-28A, the uniformity ratio, γ, is given as 

max

min

'
'

δ
γ

δ
=       (21) 

where δ'max, min are the maximum and minimum displacements measured by two LVDTs; γ ≤ 1.1 defines an 

acceptable test [3].  The uniformity ratio γmax is introduced based on the maximum and minimum 

displacements calculated from three LVDTS.  If rotation occurs during the load application, γ values can 

vary depending on where the LVDTs are located with reference to the axis of rotation.  Even if the test 

result shows that γ is within some limit, the result from the same specimen may not satisfy the condition if 

γmax is estimated.  Thus, it is more reasonable to limit the rotation θ  rather than γ.  Given a certain 

amount of allowable rotation (say 0.04°), the uniformity ratio will depend on the amount of recoverable 

(average) axial displacement (Fig. 5).  The same value of rotation could result in different values of γmax 

depending on the stiffness of the specimen and the deviator stress, both of which influence recoverable 

axial strain. 
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Concluding Remarks 

In applying load or displacement for an element test, some rotation of the rigid platen may occur such that 

the fundamental stress field is perturbed by bending.  Thus, non-uniformity between displacement 

measurements may be present, and the readings may consist of a component due to the axial force and a 

component due to the bending moment.  To estimate this non-uniformity during an element test, three 

LVDTs are needed and for equi-angular placement the sensors, the mean of the three readings is equal to 

the displacement from the axial stress; the rotation does not affect the mean value.  Furthermore, the 

amount of rotation from bending with respect to the amount of displacement from axial force causes an 

increase in the uniformity ratio, γ, the value of which is influenced by the location of the LVDTs with 

reference to the axis of rotation.  Therefore, it is more important to limit the degree of rotation and not 

set a target value for γ. 
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Figure 1. Axial force and bending moment imposed by rigid platens that rotate. 

 



 

 
Figure 2. Apparatus for holding LVDTs. 

 

 



 

-10

0

10

20

30

40

50

60

70

0.0 0.1 0.2 0.3
Time (s)

D
is

pl
ac

em
en

t (
μm

)
LVDT1
LVDT2
LVDT3

 
Figure 3. Three LVDT displacement time histories. 

 



 

 
Figure 4. Geometry of specimen and LVDTs with respect to the axis of rotation.  

 



 

1.00

1.25

1.50

1.75

2.00

0.00 0.01 0.02 0.03 0.04 0.05
Angle of Rotation θ (°)

γ m
ax

0.4%

0.025% 0.05% Δεa=0.1%

0.2%

 
Figure 5. Influence of rotation on the uniformity ratio γmax at various levels of axial strain Δεa (gage 

length = 100 mm). 
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