Utilization of Cementitious High Carbon Fly Ash to Stabilize Reclaimed Asphalt Pavement as Base Course

Phase II Update

April 16, 2008

High Carbon Fly Ash Study

Sponsor: U.S. DOE

- Research Team: University of Wisconsin at Madison and Bloom Companies
- Partner: Minnesota DOT

Team

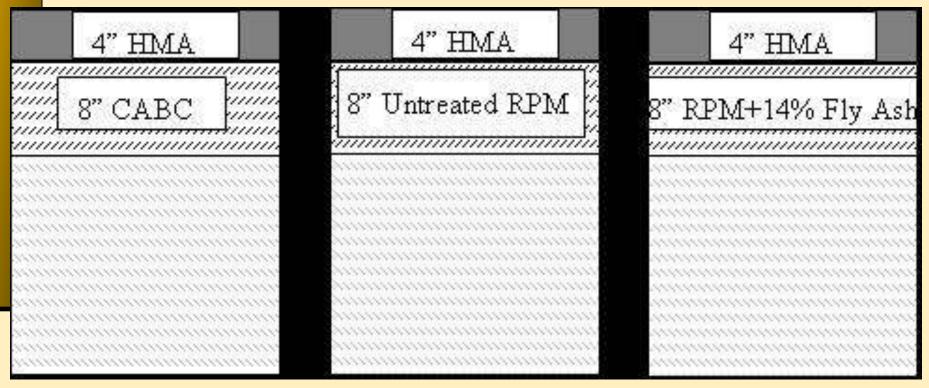
DOE Project Manager: Robert Patton

- > PI: Haifang Wen (UW)
- Team: Tuncer Edil and Craig Benson (UW), and Swapna Danda (Bloom)
- MnDOT: Maureen Jensen, Ben Worel, Tim Cylne, Roger Olson, Ed Johnson, Bob Edstrom, Leonard Palek, John Siekmeier

Phase I – Laboratory Feasibility Study: Aug. 2005 – Mar. 2006

Phase II – Field Demonstration: Aug. 2006 – Dec. 2008

Full-scale Test Road: MnROAD
Well-controlled
Well-instrumented
Real life application
Live truck

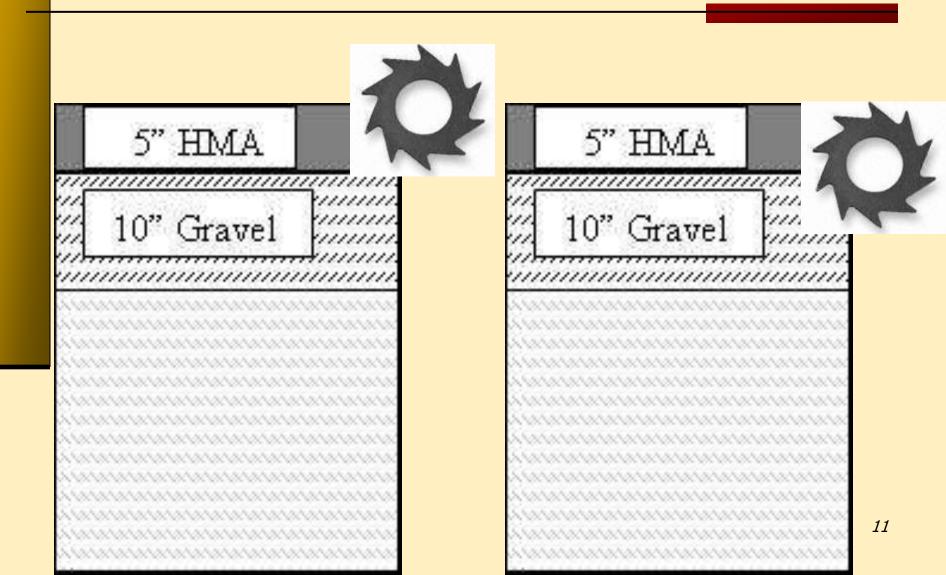


MnROAD Facility

Pavement Structures at MnROAD

- Using Riverside 8 Fly Ash from Xcel Energy
- > 14.6% LOI (Carbon)
- ➢ 22% CaO
- 14% Application Rate

- MPCA considers Riverside 8 Fly Ash a noncompliant materials
- An agreement was made on June 20, 2007 in which MPCA permitted the use of Riverside 8
- MPCA requested continuous monitoring



Phase II Construction

MnDOT let the project on June 8, 2007
 Midwest Asphalt won the bid.
 Construction started on July 23rd, 2007.

Recycle Asphalt

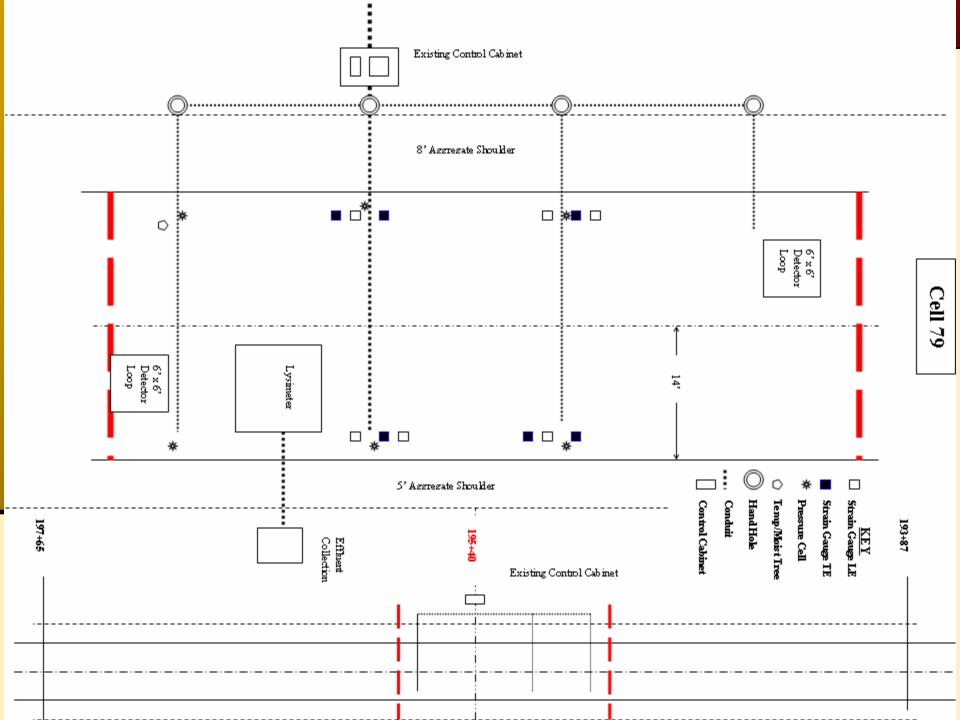
RPM Base Course Placement

Crushed Aggregate

High Carbon Fly Ash Placement[₩]

RPM/Fly Ash Mixing

RPM/Fly Ash Mixing

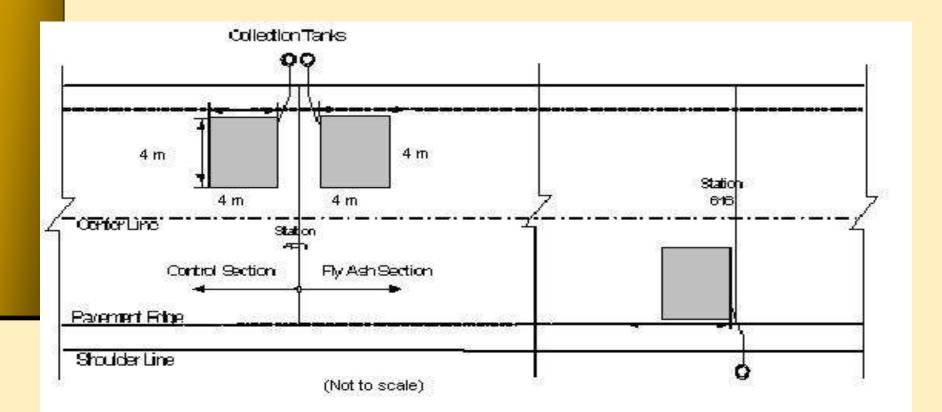


Instrumentation

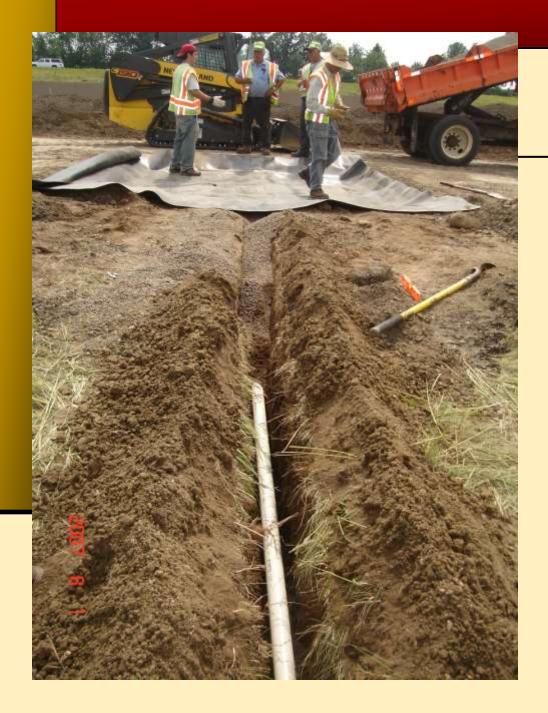
Pressure Cell, Strain Gauges, Deformation in Base, Temperature, Moisture (MnDOT)

Lysimeters for leaching (UW)

Infrastructure Construction


Instrumentation – Strain Gauge

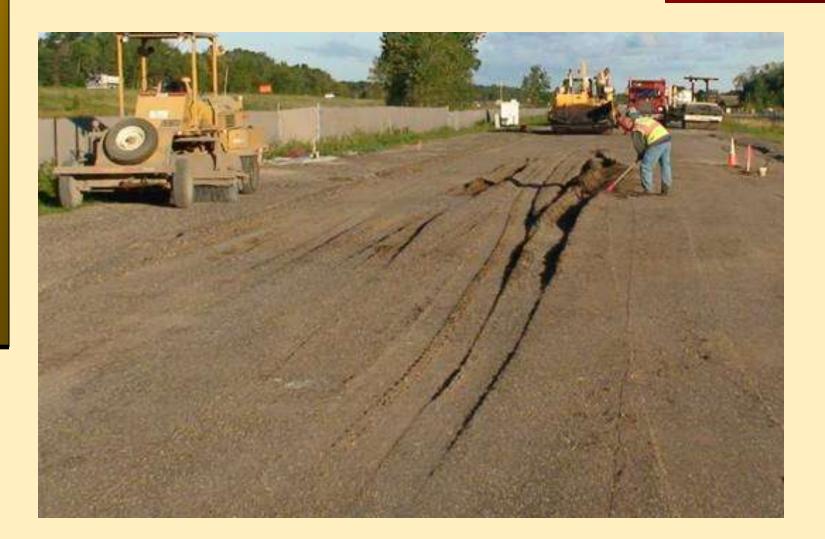
_	Lysimeter	
	100mm HMA 203mm RPM with Fly Ash, RPM without Fly Ash or Crushed Aggregate	
	Subgrade Soil Lysimeter	


Plan View of Lysimeter

Installation of Lysimeter

Collecting Tank

Collecting Tank


HMA Paving

Too wet for paving

Finally..

Open to traffic, Nov 2007

Field Tests

- Subgrade: Dynamic Cone Penetrometer (DCP), Lightweight Deflectometer (LWD)
- Base Course: DCP, LWD, Falling Weight Deflectometer (FWD), Soil Stiffness Gauge (SSG)
- HMA: FWD

Dynamic Cone Penetrometer

Calculate DCP Penetration Index and Estimate Modulus

$$DPI_{i} = \frac{\text{Re } ading_{i+5} - \text{Re } ading_{i}}{5}$$
$$\log(E_{i}) = 3.04758 - 1.06166.\log(DPI_{i})$$

Soil Stiffness Gauge

> Automatically read the material modulus

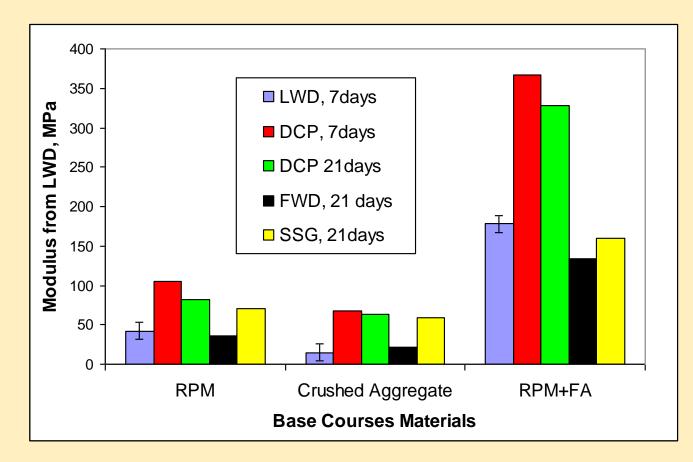
Lightweight Deflectometer

$$E = \frac{2P}{A} (1 - \nu^2) \cdot R \cdot a \cdot D_o$$

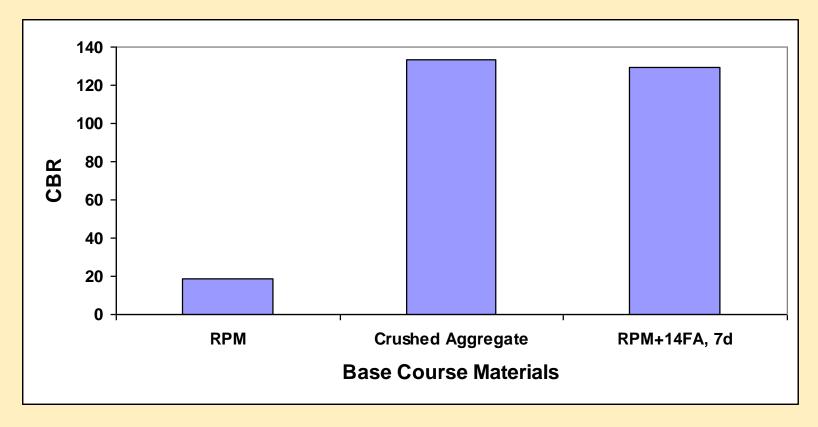
P=Peak load A=Contact area R=Plate radius α =Rigidity factor D₀=Center Deflection

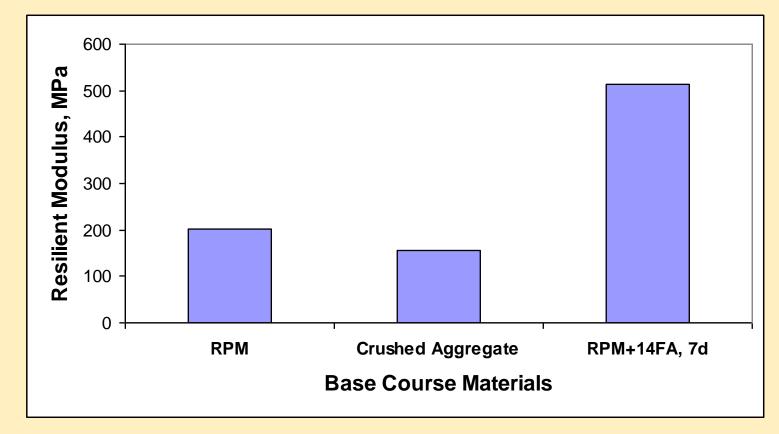
*Dynatest, 2006

Falling Weight Deflectometer


Backcalculate the modulus of layers

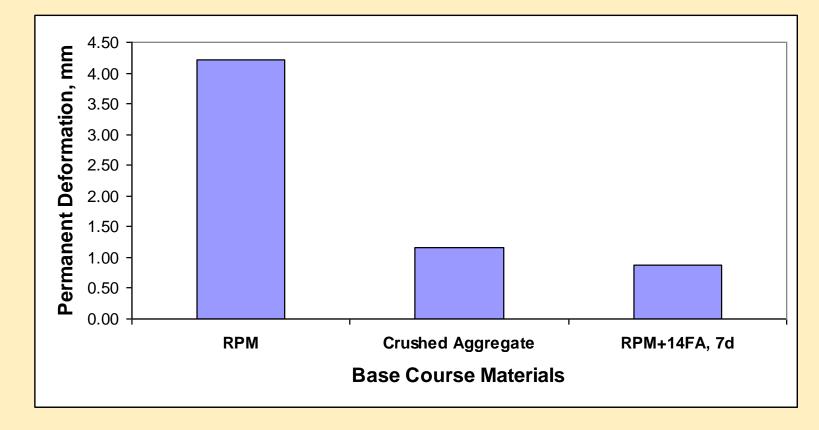
Field Tests


Modulus

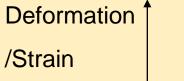

Lab Tests

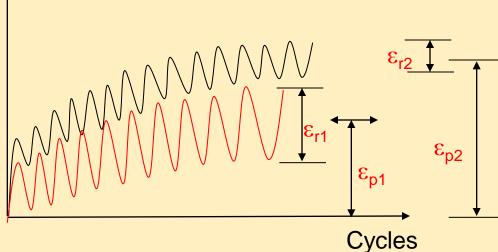
≻ CBR

Lab Tests


Resilient Modulus

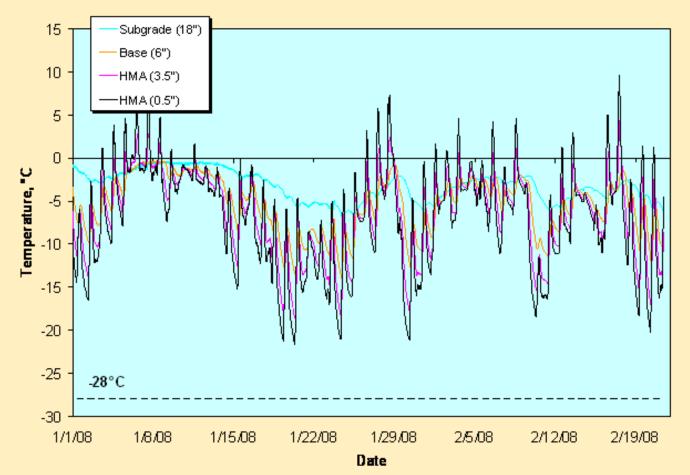
Lab Tests


Permanent Strain after Mr Tests



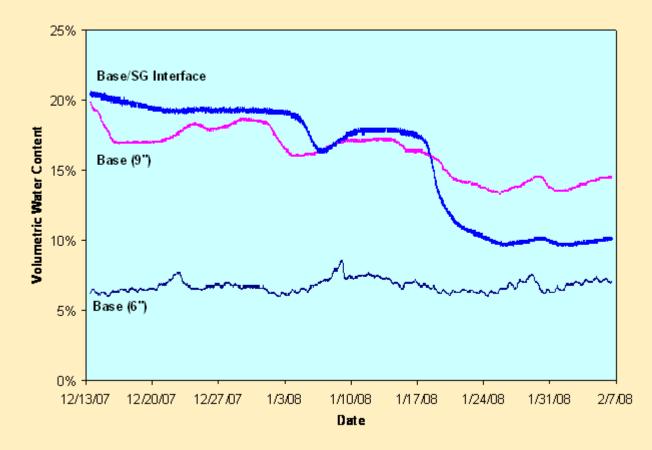
Phase II Study – Test Results

Permanent Deformation

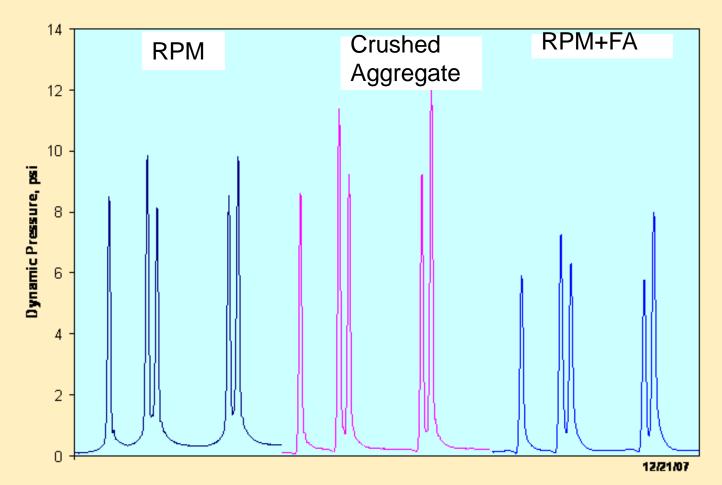

Phase II Study – Test Results

Anticipated pavement field performance, based on lab test results: > Fatigue (from best to worst): > RPM/Fly Ash \rightarrow RPM \rightarrow Crushed Aggregate > Rutting (from best to worst): > RPM/Fly Ash \rightarrow Crushed Aggregate \rightarrow RPM Long-term implication: Deterioration of fly ash base course? Moisture effects on other base course?

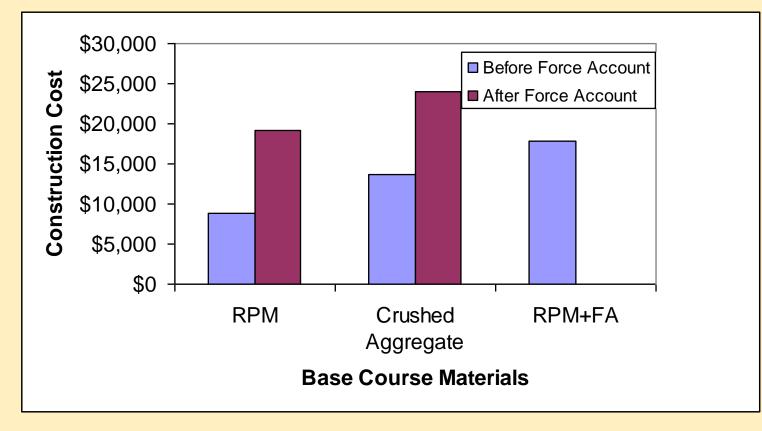
Instrumentation


> Temperature

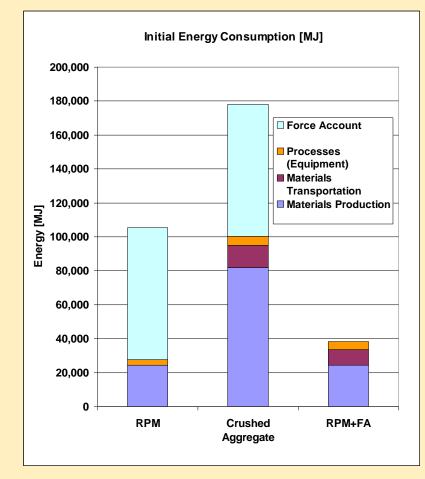
Instrumentation


Moisture Content

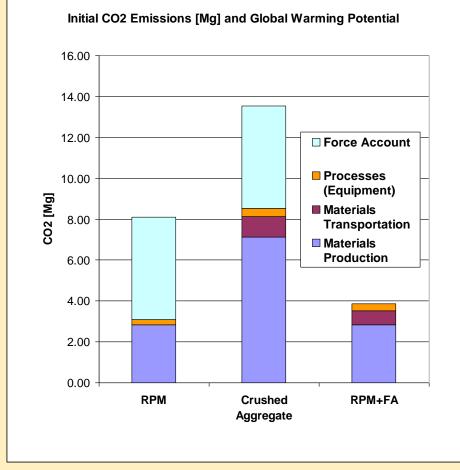
Instrumentation


Stress at the bottom of base

Construction Costs


Initial Construction Cost of Base Courses

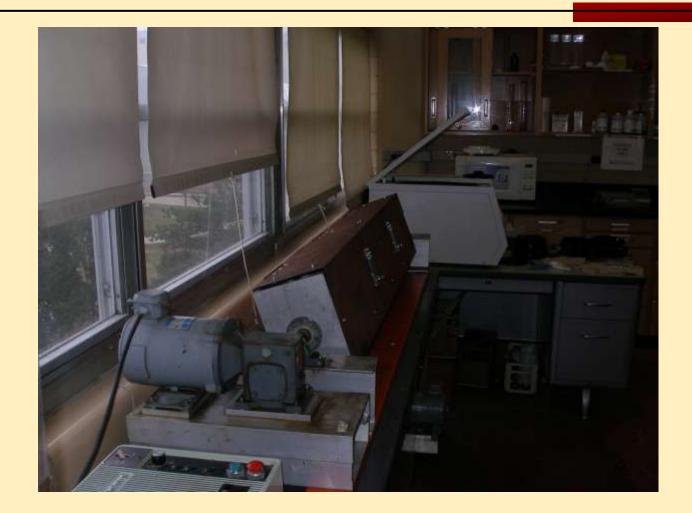
Energy Consumption


Comparison of Initial Energy Consumption

Greenhouse Gas Emission

Comparison of Initial CO₂ Emission

Leachate Collection



Leachate Samples

Inductively Coupled Plasma (ICP)

Leaching Results

Leaching Results

Standards		Boron	Mangane	Cadmiun	Chromiu	Molybdei	Arsenic		
WINR 140.10 Groundwater -			50 (Pub. V	5	100	40	10		
Preventative Action Limit		190	25 (Pub. V	0.5	10	8	1		
MN-Health Risk Limits									
(µg/L=ppb) (updated as of									
July, 2007))		600	100 (due t	4	100	None	None		
Minnesota Drinking Water									
MCL			None	5		None	10		
USEPA MCL (µg/L=ppb)			None	5		None	10		
MNRd-77, RPM	TOTAL MINERALS			HEAVY METALS					
Sample	Date	В	Mn	Cd	Cr	Mo	As		
		ppb	ррв	ppb	ррb	ррb	ppb		
MNRd-77	09/11/07	31.55		<4	1.3		<30		
MNRd-77	10/08/07	37.05		<4	7.18	423,635	91.065		
MNRd-77	12/07/07	<20	773.54	<4	8.67	4.14	<30		
MNRd-78, CA		AL MINER	ALS	HEAVY METALS					
Sample	Date	В	Mn	Cd	Cr	Mo	As		
		ррb	ррв	ррb	ppb	ррb	ppb		
MNRd-78	09/11/07	38.55		<4	<1	8.955	<30		
MNRd-78	10/08/07	78.55	<1.00	<4	2.44	44.495	<30		
MNRd-78	12/07/07	67.1	21.7	<4	3.03	<4	52.87		
MNRd-79, RPM+FA	TOT.	AL MINER	ALS	HEAVY METALS					
Sample	Date	В	Mn	Cd	Cr	Mo	As		
		ppb				ррь	ppb		
MNRd-79	9/11/07	1301.55	29.73	7.69	119.18		<30		
MNRd-79	10/8/07	1470.55	18.85	<4	43.31	1576.41	107.455		
MNRd-79	12/07/07	684.1	1.7	<4	18.40308	310.81	<30		

53

Leaching Results

Leaching Results

Standards		Arsenic	Seleniu	Vanadiu	Silver	Antimony	Thallium	Nitrate	Sulfate
WINR 140.10 Groundwater -		10	50) 30	50	6	2	10000	250000 (P
Preventative Action Limit		1	10) 6	10	1.2	0.4	2000	125000 (P
MN-Health Risk Limits									
(µg/L=ppb) (updated as of									
July, 2007))		None	30) 50	30	6	0.6	10000	None
Minnesota Drinking Water									
MCL		10) None	None	6	2		
USEPA MCL (µg/L=ppb)		10) None	None	6	2		
	AL MINER	<u>AVY MET</u>		ICP-OES ELEMENTS			I CHROMATOGRAP		
Sample	Date	As	Se	V	Ag	Sb	TI	NO3	SO4
		ppb	ppb	ppb	ррb	ppb	ррb	ppb	ppb
MNRd-77	09/11/07	<30				1051	136.4	<10	128450
MNRd-77	10/08/07	91.065				51.9		520	86210
MNRd-77	12/07/07	<30	<30) 3	<0.0	7.6	<0.0	890	119840
	AL MINER								ATOGRAP
Sample	Date	As	Se	V	Ag	Sb	TI	NO3	SO4
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
MNRd-78	09/11/07	<30				27.2	92.5		113520
MNRd-78	10/08/07	<30					85.1	4300	34080
MNRd-78	12/07/07	52.87	<30) 3	<0.0	<0.0	32.7	15430	109260
MNRd-79, RPM+FA	AL MINER	<u>AVY MET</u>	· · · · · · · · · · · · · · · · · · ·						ATOGRAP
Sample	Date	As	Se	V	Ag	Sb	TI	NO3	SO4
		ppł							
MNRd-79	9/11/07	<30					216		
MNRd-79	10/8/07	107.455					27.2	2610	1987680
MNRd-79	12/07/07	<30) <30	95.80	<0.0	<0.0	<0.0	1270	4166950



Column Leaching Test

Column Leaching Test

Column Leaching Test

Phase II Study Findings

- Field and lab tests confirmed that high carbon fly ash significantly increased the modulus of RPM
- Field and lab tests confirmed untreated RPM has higher modulus than crushed aggregate
- These observed pattern are supported by the various tests utilized, although there are quantitative differences between different tests
- Instrumentation results indicates that adding fly ash reduces the stress level on the top of subgrade, which could reduce the rutting in subgrade

Phase II Study Findings

- Using high carbon fly ash improved the bearing capacity of base course for construction
- In this field demonstration, using high carbon fly ash saved initial construction costs
- Leaching water contains heavy metals from all three different base course materials, including natural granite
- > The leaching levels reduces as time passes
- High carbon fly ash section has lowest initial energy consumption and greenhouse gas emission

Further Study

- Continuously environmental monitoring
- Performance testing and monitoring
- Life cycle cost analysis
- Life cycle energy consumption
- Life cycle emission

Thank You