University of Illinois Update

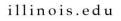
Pooled Fund - LTC TAP Meeting

October 5, 2011 Northland Inn, Minneapolis, MN

William G. Buttlar, Glaucio Paulino, Eshan Dave, Sofie Leon, Nathan Kebede, Steven Gresk

10/5/2011

Department of Civil & Environmental Engineering University of Illinois at Urbana-Champaign



Specimens Received July 27, 2011

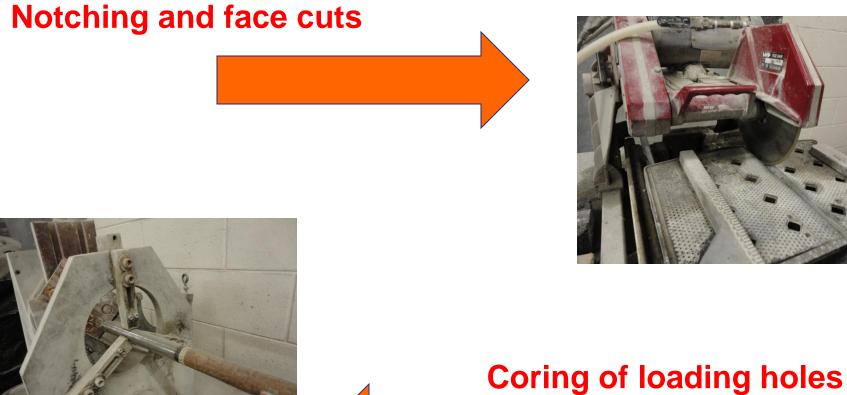
- 83 specimens received (3 replicates at each test temperature)
- All specimens were 50mm thick disks, 81 lab compacted and 2 from field cores

Wisconsin samples (mostly retests)

- All samples have PGLT of -22°C
 - -4% air voids gyratory compacted
 - -7% air voids gyratory compacted
 - -7% air void and oven conditioned
 - Field core
- Oven conditioned samples and field core tested at PGLT
- All others tested at PGLT and PGLT+10

Validation Testing (Task 6)

- Marathon (PG58-28)
 12.5mm and19mm
- CITGO (PG58-28)
 12.5mm and 19mm
- VALERO (PG58-28)
 - 12.5mm and 19mm

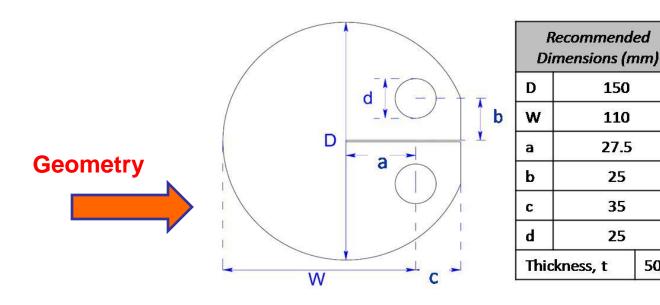

- Warm mix (PG58-28)
 - Reinke's warm mix w/ RAP and antistrip
- MIF RAP (PG58-34)
 12.5mm and 19mm
- MIF Virgin (PG58-34)
 - 12.5mm and 19mm

TEST TEMPERATURE IS PGLT AND PGLT+10 (All tests to be completed by 10/31/11)

Olmsted Co: *Rd104 **Rd112

Fabrication

illinois.edu

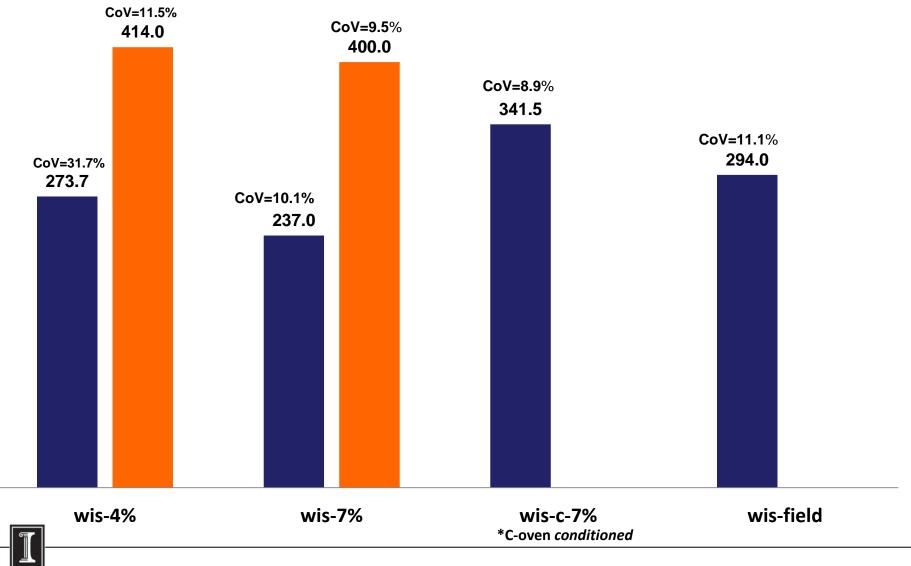

Testing

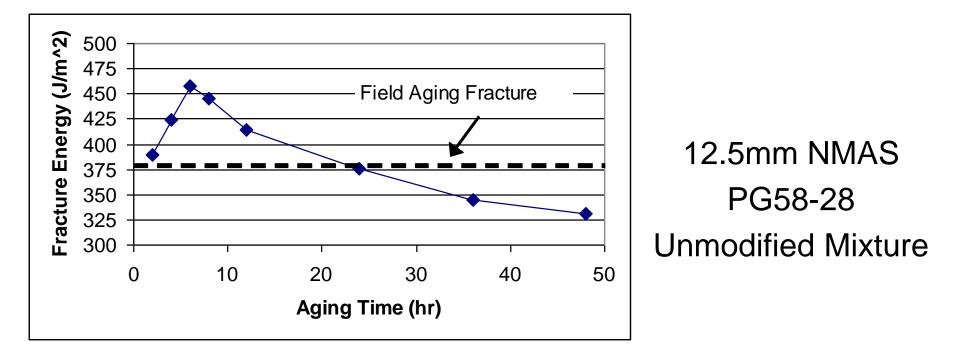
25

35

25

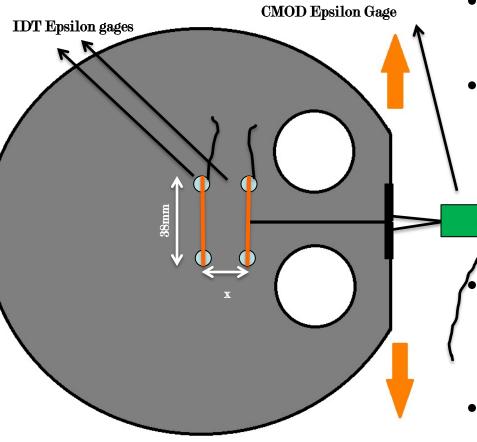
50



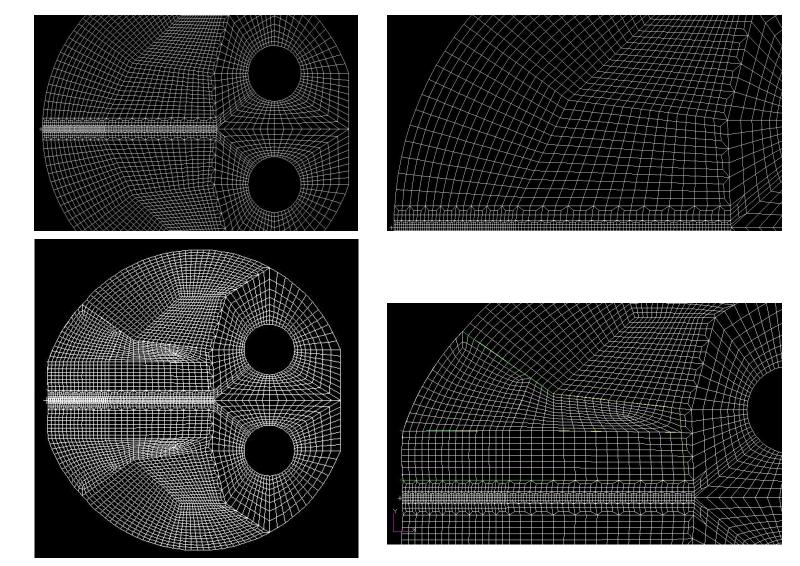

Instron 8500 servo-hydraulic load frame with an environmental chamber capable of controlling the temperature from 30°C to -30°C

Fracture energy of Wisconsin mix, J/m²

average CMOD Fracture Energy@-22C average CMOD Fracture Energy @-12C


Influence of Aging on Mixture Fracture Energy

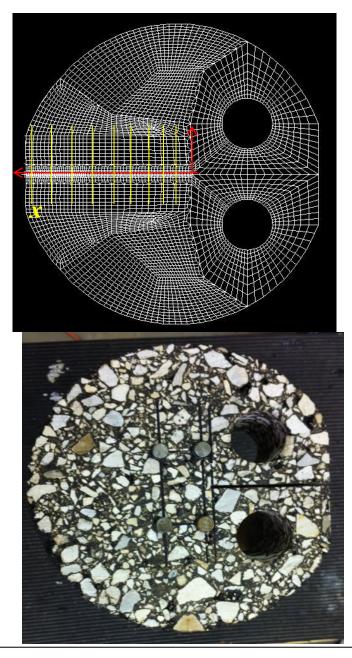
Demonstrates that Fracture Energy can First Increase, then Decrease with Aging. However, Creep Compliance Simply Decreases with Aging.


(AAPT, Braham et al., 2009)

Creep Compliance from DC(T)

- Apply a tensile creep load and collect deflections
 - Creep load should be high enough to induce measurable deflection but it should not create damage at notch tip
 - 'x' is optimized using experimental and modeling correlation
- Results will be compared to
 IDT Creep compliance

DC(T) + IDT


Old model

New model

DCT+IDT model

Four Different FEM Models :
DCT specimen with notch(Elastic)
DCT specimen with notch(Viscoelastic)
DCT specimen without notch(Elastic)
DCT specimen without notch(Viscoelastic)

- 9 Nodesets along the X axis: X (mm): 2, 10, 20, 30, 40, 50, 60, 70, 80

Update on Low Temperature Cracking Model for Asphalt Concrete

"ILLI-TC"

Department of Civil & Environmental Engineering University of Illinois at Urbana-Champaign

Why do we Need a Thermal Cracking Model?

□ Binder important, but does not completely control:

- Aggregate/mastic effects on mixture creep/fracture properties
- Effects of RAP, WMA, fibers, and other additives
- Final, constructed mixture volumetrics voids, agg structure
- Plant/field aging
- Structural effects of temperature profile, fracture process

□ Modeling can provide:

- True performance prediction (cracking vs. time)
- Input for maintenance decisions
- Insight for policy decisions

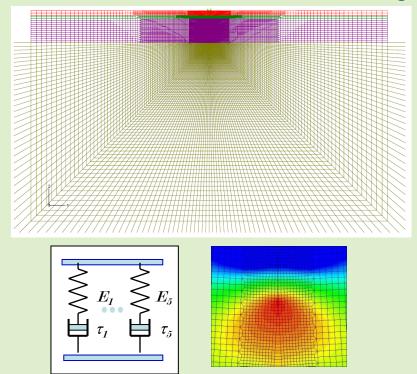
Old TC Model vs. New TC Model

TC Model

Stress Intensity Factor

 $K = \sigma(0.45 + 1.99C_0^{0.56})$

Current crack length Far-field stress at depth of crack Stress Intensity Factor


• Paris 'Law' $\Delta C = A(\Delta K)^{n}$ • Change in stress intensity factor Fracture parameters Change in crack depth

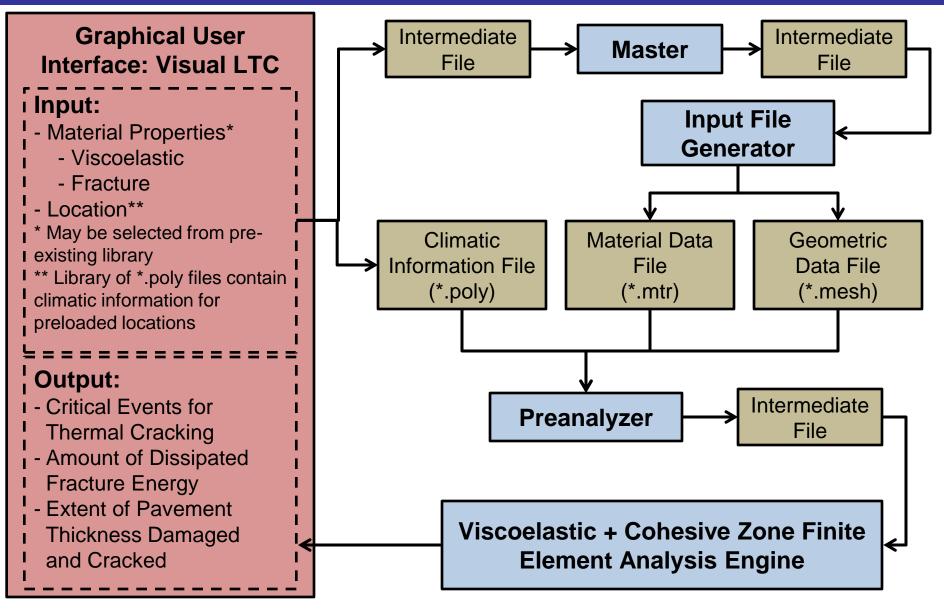
Crack amount model

Amount of cracking is a function of the probability that the crack depth is equal to or greater the thickness of the surface layer

New TC Model

 Finite element based thermal cracking prediction model with cohesive zone modeling

Modeling Tasks


- Develop and Verify Viscoelastic Finite Element Code
- Develop and Verify Cohesive Zone Fracture FE Code
- Develop Input File Generator
- Collect and Assemble Climatic Files
- Develop and Verify Preanalysis Module
- Combine Viscoelastic and CZ FE Codes and Verify
- Develop Graphical User Interface (in Conjunction with NexTrans University Transportation Center)
- Calibrate Code
- Validate Code

Completed/Reported

Completed

Underway

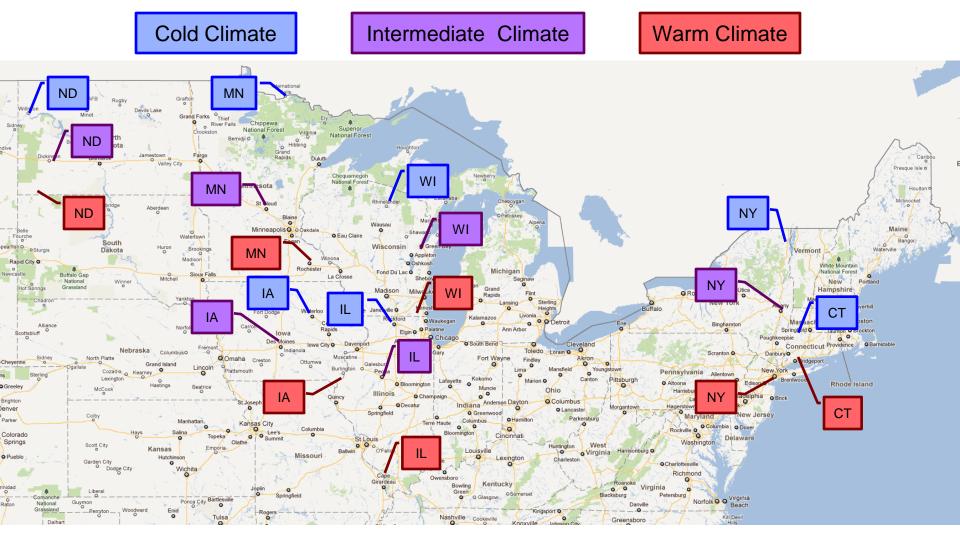
ILLI-TC Components

10/7/2011

Low Temperature Cracking

1. Collection and Assembly of Climatic Files

Climatic data from participating states was collected

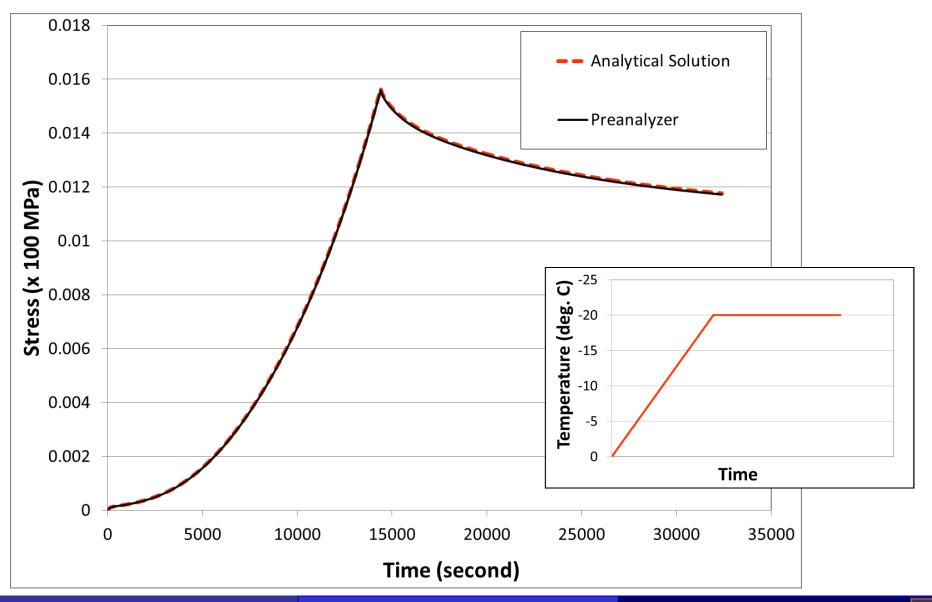

- Climatic data file repository for AASHTO MEPDG
- Two or Three locations for each of the participating states
 - Cold, Intermediate and Warm
 - Two locations for Connecticut, three for all other states
 - 7 States = 21 Climatic Conditions

Integrated Climatic Model analyses were conducted

- 11 AC Thicknesses (3" 16")
- □ Total of 220 files

1. Collection and Assembly of Climatic Files

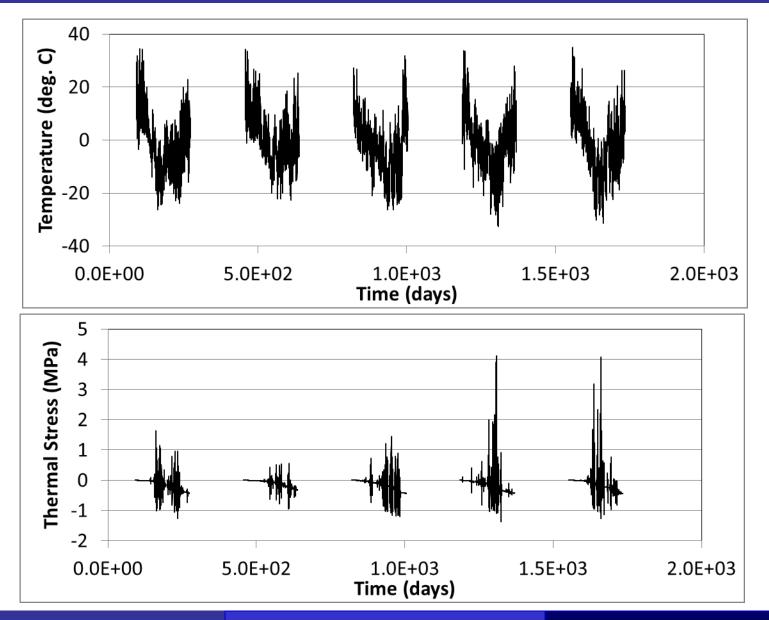
□ Map of US showing climatic locations.


10/7/2011

Low Temperature Cracking

2. Preanalysis Module

- Motivation: Optimize analysis times for the finite element analysis
- Purpose: Presolve simplified problem to identify critical cooling events
- Approach: Use 1-dimensional viscoelastic solution using surface temperatures and asphalt properties as input to predict thermally induced stresses
 - Related to thermal stress on surface of pavement
- Implementation and verification has been completed


2. Preanalysis Module: Verification

10/7/2011

Low Temperature Cracking

2. Preanalysis Module: Result (Intl. Falls, MN)

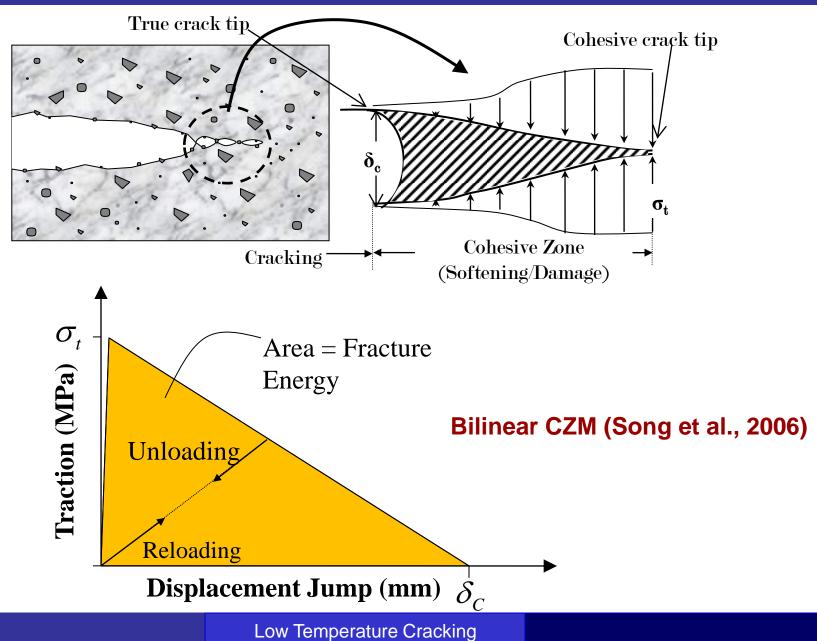
I

2. Preanalysis Module: What's Next

Determining suitable thermal stress threshold

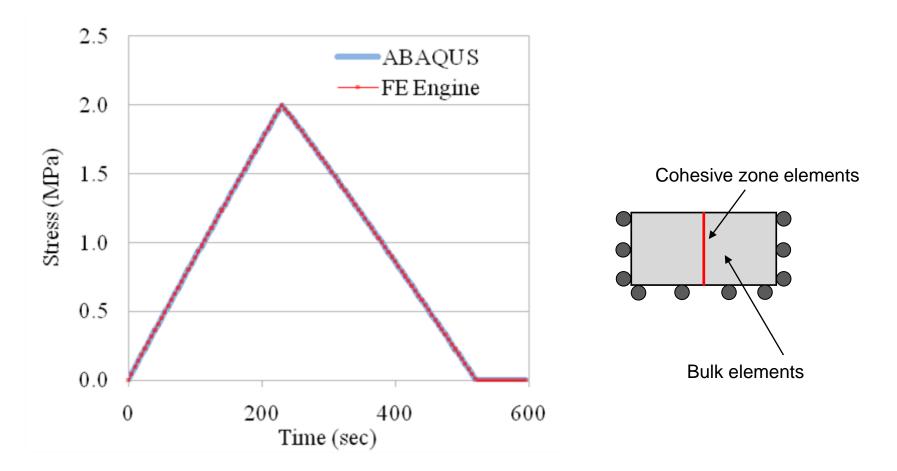
- Use these to determine finite element model start and end points
- This is done in conjunction with full scale verification
- Stress threshold determination is linked to model calibration and validation process

3. Finite Element Analysis Engine (FEAE)


Individual components have been implemented and verified

- Viscoelastic bulk elements
- Cohesive zone fracture elements
- Final code has been generated through combination of above
- Code has been linked to other components of ILLI-TC
- Preliminary verification has been conducted

3. FEAE: Cohesive Zone Model


- Cohesive zone model (CZM) is a computationally efficient and effective way of modeling damage and cracking in asphalt concrete
- CZM Capabilities:
 - Softening (damage)
 - Complete separation (difficult with continuum type models)
 - Captures the length scale associated with fracture process

3. FEAE: Bilinear Cohesive Zone Model

3. FEAE: Verification Example

□ Temperature drop 0° to -10°C over 600 sec

□ Start

• Visual LTC	
Start Project Information Pavement Materials & Structure Welcome to Visual LTC: The low temperature crackin	g in asphalt pavements analysis tool
Create New Project	
Open Existing Project	Browse For Folder
Close	Working Directory should contain a folder called "hcd" with dimatic data files and a folder called "files" to hold the ICM output files. Desktop Libraries Administrator Administrator Computer Network Control Panel Recycle Bin ILLI-TC Test Directory_v2 climatic Make New Folder OK

Ĩ

Start Project Information

🖳 Visual LTC		
Start Project Information	Pavement Materials & Structure	
General Information Project Name: Project Description:	MN lintermediate Analysis Comparison - Mix 1	
Analyzed By:	SL Date October 05, 20	11 💵
Working Directory:	C:\Users\Administrator\Desktop\Test Directory_v2	Browse
Project Location State MN - Zone Intermediate	Analysis Period	
Close Save Pro	oject Back Next	Run

Start	🖳 Visual LTC		
 Project Information Plot 	Start Project Information General Information Project Name: Project Description:	MN lintermediate	
temperatur	Analyzed By:	SL	Date October 05, 2011
Plot Temperatures 70 60 50 Pan: middle mouse & drag Context Menu: right mouse 40 9 10 -10 -20 -40 January, Year 02	Air Tempe 6°C at 6 AM on Feb 04, Year 02 January, Year 0	erature for Intermediate Climate in MN	January, Year 05
			Close

Ĩ

 Start
 Project Information
 Plot temperature
 Pavement

materials & structure

 Insert Asphalt Layer

🖳 Visual LTC								1
Start Project Informa	tion Pavement Materials &	Structure]					
Asphalt Layer Properties								
Insert Asphalt L	ayer Edit Asphat La	ayer	Clear Asphalt Laye	r)				
	🖳 Add Asphalt Layer	and a						- 0 x
•	User Type	Aspha	It Mixture					
	Ma Decid Call 24					•		
	 Standard Oser Advanced User 		ct Asphalt Mixture:		mala Mix 2			
	Advanced User	N	lixture Description:	Sar	mple Mix 2			<u> </u>
Therm								T
	Editable Properties							
Cree	Thickness:	→ in	Tensile Strength:	350	MPa Fra	cture Ene	ergy: 400	J/m²
Base Layer Proper	-							
Base T	6				Compute mix co	officiento	f thermal ex	cpansion (α)
Base Mate	Unit V 7	48	g/cm³		Mixture VMA:	19.5	%	
Base Thickn	Thermal Condi 9	67	BTU/hr-ft °F		Aggregate α:	2.78E-0	6 mm/m	m/°C
Buse minim	Heat Ca 12	23	BTU/Ib-°F		Mixture α:	2.67E-0	5 mm/m	m/°C
	Creep Compliance Dat							
Close Sav		Loading		_			_	
	Units: 1/GPa	Time	Low Temp -20	°C	Mid Temp -10	°C Hig	h Temp (- 0° (
	Amount of Data: 100 Second	1	2.340E-002		3.160E-002		4.660E-00	02
	 100 Second 1000 Second 	2	2.400E-002		3.380E-002		1.900E-00	03
	I 1000 Second	5	2.500E-002		3.710E-002		6.140E-00	02 ≡
		10	2.600E-002		4.000E-002		7.100E-00	02
		20	2.700E-002		4.300E-002		8.400E-00	02
		50	2.900E-002		5.000E-002		1.060E-00	01
		100	3.000E-002		5.400E-002		1.310E-00	01
		200	3.200E-002		5.600E-002		1.560E-00	01 +
		F00	2 5005 002		0 7005 000		2 1 405 00	
	Cancel							Done
				_				

- □ Start
- Project Information
 - Plot temperature
- Pavement
 materials &
 structure
- Run

🖳 Visual LTC					- • ×		
Start Project Information Pavement Materials & Structure							
Asphalt Layer Properties							
Insert Asphalt Layer Edit Asphat Layer Clear Asphalt Layer							
Mixture Name:	34						
Description: Sample Mix 2					*		
Thickness:	5	in	Mixture VMA:	19.5	%		
Unit Weight	148	g/cm³	Aggregate alpha:	2.78E-06	mm/mm/°C		
Thermal Conductivity: 0.67		BTU/hr-ft °F	Mixture alpha:	2.67E-05	mm/mm/°C		
Heat Capacity: 0.23		BTU/lb-°F	Fracture Energy:	400	MPa		
Creep Compliance: View Da			Tensile Strength:	350	J/m²		
Base Layer Properties		Sub	grade Properties		1		
Base Type: Granula	r		Subgrade Material: A-7-5				
Base Material: Fill this i	n		Last Layer?:	yes			
Base Thickness: 12	in						
Close Save Project			Back	Next	Run		

Modeling – Remaining Tasks

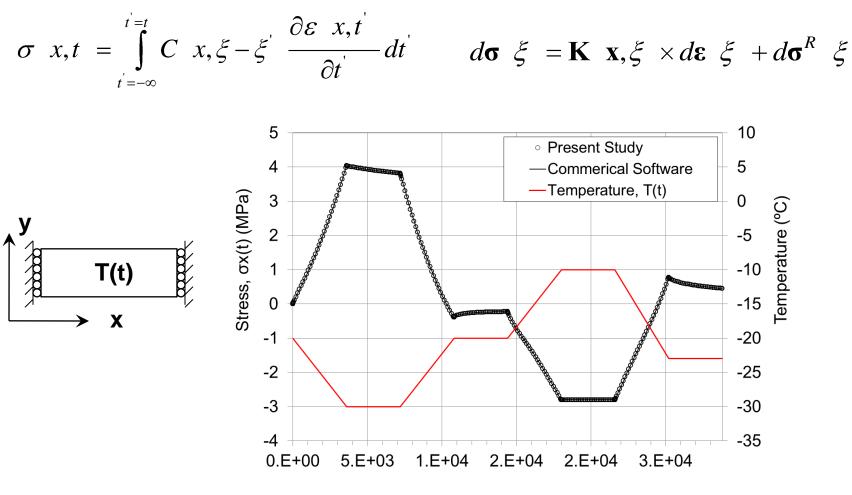
- Verify Combined Code for Full Scale Pavement Models – Sept-Oct 2011
- □ Calibrate Code Oct Nov 2011
- □ Validate Code Nov 2011 Jan 2012
 - Pavement performance data from Phase-II

APPENDIX

"User Type"

- Similar to existing MEPDG layout
- User can easily switch between user types

Standard User


- Practitioners
- Access to all existing mixes
- Default mix properties can be viewed but not changed

Advanced User

- Researchers/Developers
- Access to all existing mixes
- Default mix properties can be viewed and changed
- Modify existing mixes and add new mixes

3. FEAE: Viscoelastic Formulation

Recursive-incremental time integration scheme

Time (sec)