Warming up to WMA: Applications by Northern States

Informational Webinar: June 1st, 2011

Brief Project Introduction

Dr. George Dewey, PhD gdewey@mtu.edu Associate Professor, Transportation Enterprise Advisor Department of Civil and Environmental Engineering Michigan Technological University

Disclaimer

The contents of this presentation reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This presentation is disseminated under the sponsorship of the Minnesota Department of Transportation in the interest of information exchange. The contents do not necessarily reflect the official views or policies of the Minnesota Department of Transportation or the Federal Highway Administration. This presentation does not constitute a standard, specification, or regulation. The U.S. Government assumes no liability for the contents or use thereof.

Acknowledgements

- Minnesota Department of Transportation www.dot.state.mn.us
- Transportation Engineering Road Research Alliance (TERRA) <u>www.terraroadalliance.org</u>
- University Transportation Center for Materials in Sustainable Transportation Infrastructure at Michigan Tech (UTC-MiSTI) <u>www.misti.mtu.edu</u>
- Technical Advisory Volunteers

Transportation Enterprise

- Michigan Tech's Enterprise Program
 - Undergraduate, hands-on, team-based learning
 - Real challenges and problems facing the industry
 - Transportation Enterprise projects (2010-11)
 - Sustainability Model for a Concrete Rail Tie Producer
 - Electric Vehicle Charging Infrastructure Study
 - Predictive Model for Carbonate Aggregate Polishing
 - WMA Synthesis of Northern States

WMA Synthesis Project

- Team
 - Ben Kohler, Tim Nygard, Paul Kopanna, Wes Hineline, and Luke Arnold
- Two semesters 1 to 2 credits per semester
 - Understand the problem/challenge, learn the technology and begin discovery calls with industry professionals (Fall)
 - Finalize discovery, attend Industry meeting, develop draft report, identify possible speakers for the webinar (Spring)

Luke Arnold's

An Introduction to Warm Mix Asphalt

Outline

- What Is WMA
- Potential Benefits of WMA
- Types of WMA
- Differences between these technologies
- Concerns with WMA pavements
- How these concerns are being addressed

What is WMA?

- Essentially, WMA is HMA produced at a lower temperatures
- WMA leads to
 Lower viscosity of asphalt mix
 Decreased binder aging

Potential Benefits

Improved flow, even at lower temperatures
 Compaction attainable at lower temperatures
 Stiffer mixes may be easier to compact

Potential Benefits

Lower production temperature leads to
 Slower rate of cooling
 Energy savings
 Fewer emissions

Potential Benefits

Other Possibilities
 Increased RAP/RAS usage
 Better cold weather performance
 Longer paving season

Types of WMA

FoamingAdditives

Foaming Technologies

Addition of water causes volume expansion □ Earlier aggregate coating □ Increased workability Different types of Foaming Processes Water Injection □ Moist aggregate Temperature reductions of ~30°F

Additives

- Chemical Additives
 Reduced viscosity of mix
 Temperature reductions of 75°F
- Organic Additives (wax)
 Wax dissolves into liquid asphalt
 Reduces viscosity of mix

Not All WMA is Equal

 Each technology has it's own inherent limitations

Foaming Processes

□ Water Injection Systems

Largest initial investment (\$50,000-\$120,000)
Fairly fast payback period
At 30°F ~ 10% reduction in fuel consumption
~70c saved per ton of mix
May be difficult to control volumetrics
Typically not used during freezing temperatures

Foaming Processes

Zeolites

Plant modification necessary (\$35,000-\$60,000)
 Cost of additives (around \$1-2 per ton)
 No problem's controlling volumetrics

Chemical Additives

- Chemical Additives
 - \Box Largest temperature reductions (up to 75°F)
 - □ More environmental benefits?
 - Less binder aging
 - □ Typically little to no initial investment
 - Must pay for additives with each use (\$2-\$5 per ton)

Organic Additives

Organic Additives

- ~50°F temperature reduction
- Some technologies can be blended at the asphalt terminal
- Plant modification needed for plant blending
- Cost of additive \$2-\$4 per ton of mix
- Paraffin waxes (Sasobit) may modify PG Binder grade

Further Research Needs

Rutting

- Long term performance
- Need for evaluating technologies
- Developing specifications for the use of WMA
- Mix Design
- Economic Feasibility

Final Thoughts

- Many of the research needs are currently being addressed
 - Several large NCHRP projects to evaluate long term performance, mix design, environmental impact and costs
 - Rutgers University Effect of RAP of WMA
 - □ Oklahoma University QC/QA testing differences

http://www.trb.org/Main/Home.aspx

WMA Technologies

- Foaming Processes
 - Aquablack
 - 🗆 AquaFoam
 - Double Barrel Green (DBG)
 - □ Terex
 - □ Advera (Zeolite)
 - □ Aspha-Min (Zeolite)
 - □ Low Emission Asphalt (LEA)
 - Meeker Warm Mix
 - □ Accu-Shear
 - Tri-Warm Mix Injection System

Chemical Additives

- Evotherm
- Hypertherm
- Rediset WMX

WMA Technologies

Organic Additives
 Astech PER
 Sasobit
 Sonnewarmix
 Thiopave
 TLA-X

Federal Highway Administration **Every Day Counts** Innovation Initiative

WARM MIX ASPHALT

"We are continuously looking for new ideas, working with stakeholders to bring new products and innovative processes to market." – V. Mendez

Challenge... to make
 Every Day Count!

Victor Mendez FHWA Administrator

Greg Nadeau Deputy Administrator

What are the innovations?

- Warm Mix Asphalt
- Precast Bridge Elements
- Geosynthetic Reinforced Soil
- Safety Edge

Adaptive Traffic Control Technology

How Were They Selected?

- Stakeholder Rating Panel January 26th 2010
 - NACE
 - AASHTO
 - South Dakota DOT
 - ARTBA
 - AGC
 - FHWA Divisions & HQ

3 Keys of the EDC Business Model

Key Partners

State DOT

Local Public Agencies Contractors Consultants Industry Suppliers

Key Resources

WMA Core Team **FHWA Division Staff** LTAP Staff AASHTO Other Associations

Key Perspective

- Focus on advocating and recommending technologies that meet the States' needs;
- 2. Develop an internal network of individuals trained to deploy new, national, initiatives at the state and local level;
- 3. Focus on EDC priority initiatives; and
- 4. Ensuring all staff incorporates new business model perspective into day to day activities.

Warm Mix Asphalt 101

Just the BASICS please...

Rer Day Sounts

Investigation and Implementation Premise

Warm Mix Asphalt

Although there are many factors driving the development and implementation of WMA technologies globally, in order for WMA to succeed in the US, *WMA pavements must have equal or better performance when compared to traditional HMA pavements.*

Warm Mix Asphalt

Various technologies are used, which allows the asphalt mixture to be produced, transported, placed, and compacted at lower temperatures ...

Typical production temperature reduction **30 to 75°F**

WMA Technology Categories:

- Materials Processing
- Organic Additives
- Chemical Additives
- Foaming Processes

• Hybrid Systems (combination of technologies)

Brief History...

- 1995 Preliminary Lab Experiments
- 1997 German Bitumen Forum
- 2000 Euroasphalt & Eurobitume Congress
- NAPA 2002 European Scan Tour
 - Germany and Norway
- NAPA 2003 Annual Convention
 - San Diego
- 2004 First public demonstration in US
- 2005 WMA Technical Working Group
- 2007 AASHTO FHWA International Scan Tour
- 2008 First US International Conference on WMA

Factors Driving Development of WMA

- Improvement in field compaction... less variable ... better performance!!!
- Worker comfort ... reduced fatigue
- Environmental and sustainable development concerns, "Green Highway Construction"
 - Reduction in energy consumption (fossil fuels)
 - Reduction in CO₂ and other emissions
- Extension of paving season and potential for longer haul distances

• I.C. = I.P.

Improved Compaction = Improved Performance

- F.E.W. key benefits...
 - Fuel
 - Emissions
 - Worker Comfort

Implementation Deployment Status

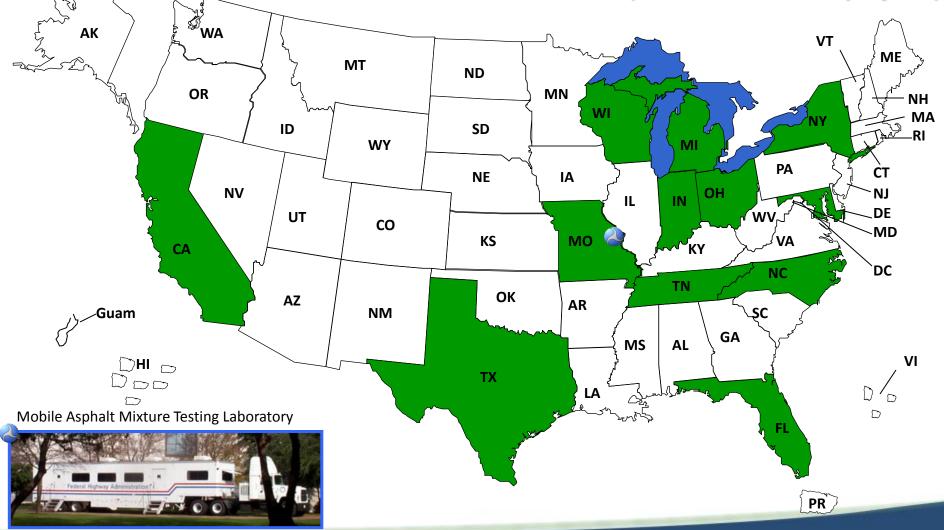
- Definition (NCHRP Synthesis 355)
- Deployment: The systematic process of distributing an innovation for use. This term implies a relatively broad use, rather than pilot, demonstration, or incidental use of the innovation. A technology can be considered deployed when it is used multiple times within an organizational or group context, such as use resulting from a newly written specification.

Warm Mix Asphalt **Implementation Status Potential Barriers** and Performance Metrics of EDC... CONSTRUCT

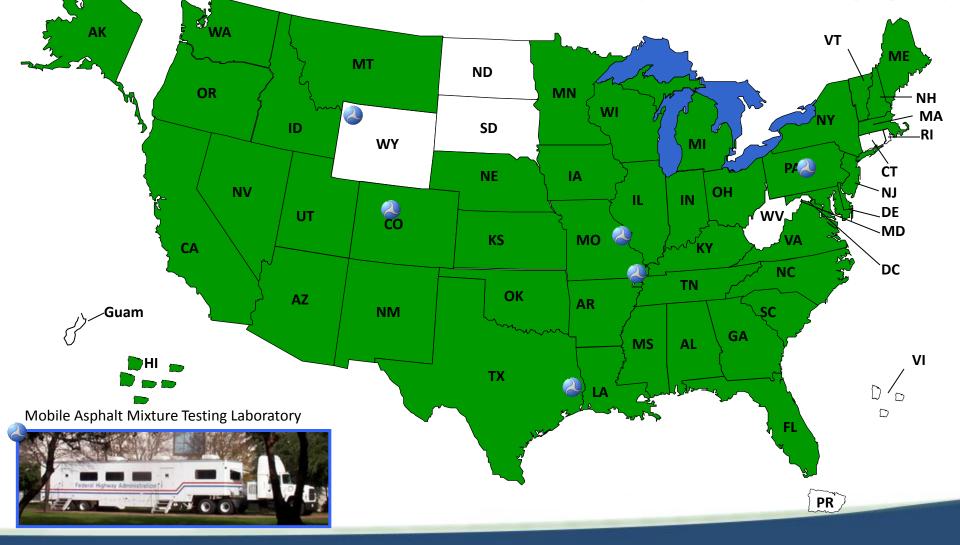
Deployment Status

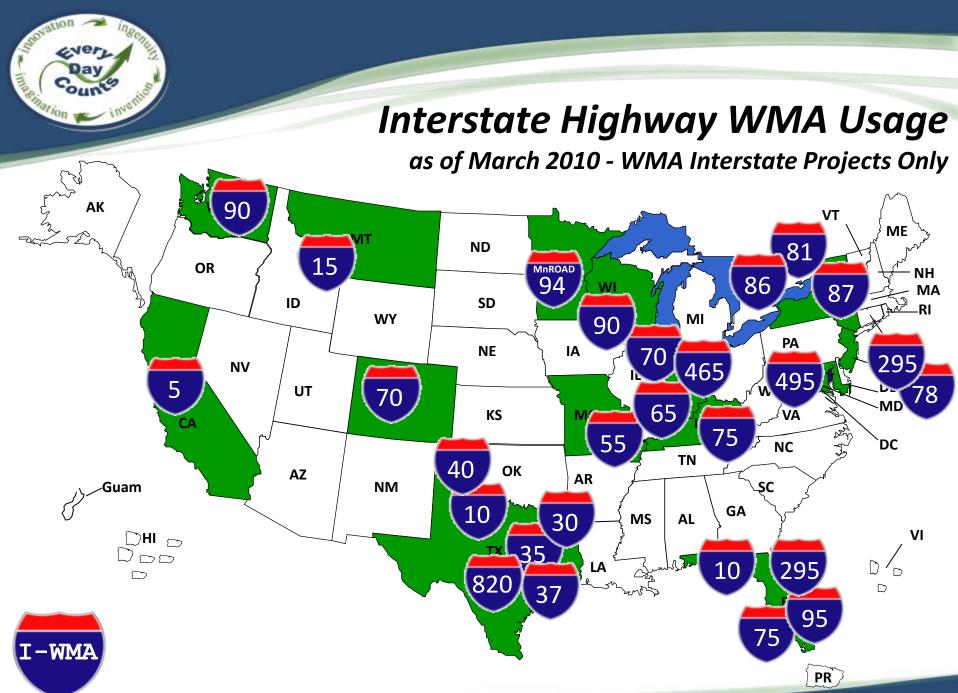
WMA projects have been completed in over 40 States

At least 12+ States have adopted permissive specifications

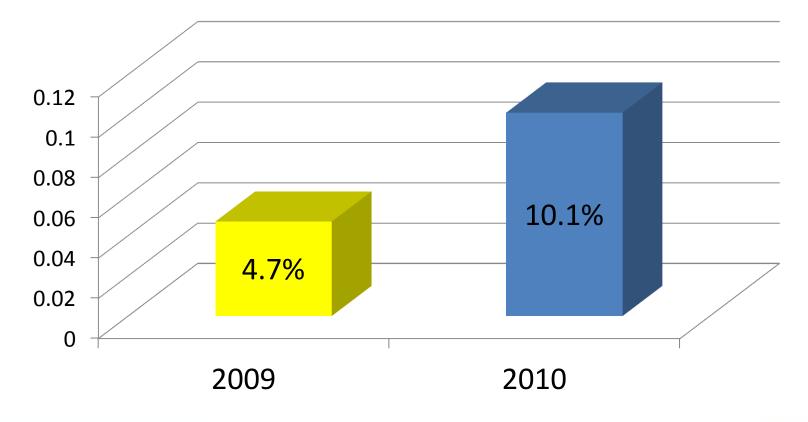

Photo: Maine DOT WMA Demo...

WMA Trials & Demonstration Projects


Jan 2007 - All Sources (not limited to DOT projects)



WMA Trials & Demonstration Projects


Jan 2010 - All Sources (not limited to DOT projects)

WMA Usage Percentage of Total Asphalt Production in US

- There are several approaches being employed to allow WMA by SHAs...
 - Florida/Texas Approved/Qualified Products List
 - Texas/Illinois Performance Approach
 - WMA with Hamburg LWT for rutting & moisture damage
 - Illinois/New York Experimental Features Program
 - www.fhwa.dot.gov/programadmin/contracts/expermnt.cfm
- Challenging: Working with each Agency to find the best approach for them!

Potential Barriers

- WMA technologies can not be simply "dropped in" to an existing HMA mix design or HMA production facility
- <u>Challenge</u>: WMA technologies require mix design changes, production operational changes, and greater QC and best practices for the contractor to achieve all WMA benefits, including fuel savings and lower emissions

Performance Metrics

- By December 2011, 40 State DOTs and all Federal Lands Divisions will have a specification &/or contractual language that allows WMA on Federal-aid or Federal Lands projects.
- 2. By December 2012, at least 30 State DOTs will have achieved set targets for WMA usage.

Ex. Performance Measures

- Target % of asphalt production
 - Ex. 15% or more uses WMA technologies
- Target % of asphalt projects specify WMA
 - Ex. 20% or more
- Target % of asphalt projects allow WMA (permissive spec)
 - Ex. 50% or more allow...
- Target number of demonstration/trial projects using WMA are placed AND standard WMA specification/contract language is developed.

Warm Mix Asphalt

General Technology Categories:

- Materials Processing
- Organic Additives

 wax, zeolites, other
- Chemical Additives
- Foaming Processes

 water injection, zeolites
- Hybrid Systems (combination of technologies)

Currently over 30 Technologies are Marketed and Available in the US.

More to come ... Many other technologies are also used Internationally.

National Research Initiatives

- NCHRP 9-43 *"Mix Design Practices for Warm Mix Asphalt"* \$500,000
- NCHRP 9-47A "Engineering Properties, Emissions, and Field Performance" \$900,000
- NCHRP 9-49 "Long Term Field Performance of Warm Mix Asphalt Technologies"
 - Phase I, Moisture Susceptibility
 - Phase II, Long-Term Performance

 NCHRP 9-43 "Mix Design Practices for Warm Mix Asphalt" \$500,000

• The full report and appendices are available at the following link:

http://www.trb.org/Main/Blurbs/Mix_Design_Practices_for_WarmMix_Asphalt_165013.aspx?utm_medium= etmail&utm_source=Transportation%20Research%20Board&utm_campaign=TRB+E-Newsletter+-+05-24-2011&utm_content=Customer&utm_term=

NCHRP 09-43

- Mixture Design
 - Similar to AASHTO R35 "Standard Practice for Superpave Volumetric Design for (HMA)"
 - Criteria for HMA from AASHTO M323
 - Mandatory Test for Rutting Resistance utilizing the AMPT
 Flow Number (Fn) test
- Mixture Analysis
 - Optional Performance Tests
 - Modulus
 - Fatigue Cracking
- Thermal Cracking

NCHRP 09-43

- Address the increasingly wide range of WMA technologies and processes
- Design Mixtures Based on AASHTO M323
 - Materials Selection
 - Volumetric Design
 - Moisture Damage and Rutting
 - Coating and "Compactability"
- Develop AASHTO Standard Practice
 - Modified AASHTO R35 for WMA
 - Short Term Conditioning
 - 2 hours at compaction temperature

(Final Report) NCHRP 09-43

- NCHRP 09-43 is complete.
- A Draft Appendix to AASHTO R35 outlining recommended design adjustments for WMA is currently available.
- An NHI web based training on the draft Appendix is currently under development and may be available this fall.

• NCHRP 9-47A "Engineering Properties, Emissions, and Field Performance" \$900,000

- NCHRP 9-47A "Engineering Properties, Emissions, and Field Performance" \$900,000
 - National Center for Asphalt Technology at Auburn University, Alabama
 - State of the Practice Report and Research Plan have been submitted to the NCHRP panel for review and approval
 - Emissions & Fuel Savings data collection is complete and the data will be reported later this fall.

- NCHRP 9-49 and 9-49A "Long Term Field Performance of Warm Mix Asphalt Technologies"
 - Project 9-49 is Phase I, "Moisture Susceptibility"
 - Project 9-49A is Phase II, "Long-Term Performance"

NCHRP 09-49

- Phase 1, Moisture Susceptibility
- Texas Transportation Institute at Texas A&M University, College Station, TX
- 30 month duration
- \$450,000 funds available for Phase 1
- Phase 2 (Project 9-49A), Long Term Performance will be initiated late 2011

Anticipated NCHRP Projects

- Project 09-52 Short-Term Laboratory Conditioning of WMA Mixtures for Mix Design and Performance Testing
- Project 09-53 Asphalt Foaming Characteristics for Warm Mix Asphalt Applications

Both are expected to be awarded in 2012

WMA International Scan Tour

- Joint Program w/ FHWA, AASHTO, NCHRP and Industry
- Publication
 FHWA-PL-08-007
- Scan Final Report

 .pdf available at http://international.fhwa.dot. gov/pubs/pl08007/index.cfm

SPONSORED BY: Other Strategy Strategy

IN COOPERATION WITH: American Association of State Highway and Transportation Officials

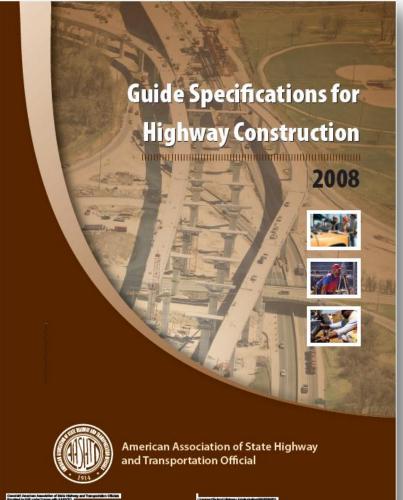
National Cooperative Highway Research Program

EBRUARY 2008

AASHTO Guide Specification for Highway Construction 2008

DIVISION 400 FLEXIBLE PAVEMENTS

SECTION 401 HOT MIX ASPHALT (HMA) PAVEMENTS


401.01 Description

401.02 Material

401.03 Construction

401.04 Measurement

401.05 Payment

Warm Mix Asphalt (WMA) Guide Specification for Highway Construction

DIVISION 400 - Asphalt Pavements and Surface Treatments

SECTION 4XX - WARM MIX ASPHALT (WMA) PAVEMENTS

4XX.01 Description

4XX.02 Material

4XX.03 Construction

4XX.04 Measurement

4XX.05 Payment

Warm Mix Asphalt (WMA) Guide Specification for Highway Construction

Division 400 - Asphalt Pavements and Surface Treatments

SECTION 4XX - WARM MIX ASPHALT (WMA) PAVEMENT

Warm mix asphalt (WMA) is the generic term used to describe the reduction in production, paving, and compaction temperatures achieved through the application of one of several WMA technologies.

Some modifications to HMA plants may be necessary to accommodate the WMA technologies as noted in Section 4XX.03 Construction.

Production and paving temperatures may need to be increased for higher reclaimed asphalt pavement (RAP) contents, increased haul distances, decreased ambient temperatures, or other WMA project specific conditions.

All provisions for the production and placement of conventional HMA mixtures as stipulated in [applicable Agency specification] are in force except as noted below.

4XX.01 Description

Construct one or more courses of plant produced warm mix asphalt (WMA) pavement on a prepared foundation, using virgin aggregate or a combination of virgin and/or reclaimed aggregate material (RAM) and prescribed manufactured WMA asilitives and/or WMA plant process modifications. Use of FAP materials, consisting of cold milled, crushed, or processed bituminous asphalt mixture; and reclaimed asphals ishingles (RAS) are permitted at the curreat [*Aggncy specified*] percentages, provided that the mixture meets all the requirements of these specifications.

4XX.02 Material

WMA may be produced by one or a combination of several technologies involving HMA plant foaming processes and equipment, mineral additives, or chemicals that allow the reduction of mix production temperatures to within 185% fo 275%. (Note: The upper temperature range is appropriate for modified apphalt binders and WMA mixtures which include higher percentages of reclaimed aphalt pavement.)

Subsection XXX

Provide materials as specified in:	
Aggregate	
Liquid Antistrips	
Asphalt Binder	
HMA Additives	
Lime for Asphalt Mixtures	
Mineral Filler	
Reclaimed Asphalt Pavement	
Reclaimed Aggregate Material	
Reclaimed Asphalt Shingles	

Warm Mix Asphalt Technical Working Group Page 1 of 7

November 2008

Quality Improvement Series 125

Warm-Mix Asphalt: Best Practices

Quality Improvement Series 125

Warm-Mix Asphalt: Best Practices

- Stockpile Moisture Management
- Burner Adjustments and Efficiency
- Aggregate Drying and Baghouse
 Temperatures
- Drum Slope and Flighting
- Combustion Air
- RAP usage
- Placement Changes

The following references detail specifics related to plant modifications and operational changes in order to maximize the benefits of WMA production:

- Quality Improvement Series 125 (QIP 125), "Warm Mix Asphalt: Best Practices",

- Quality Improvement Series 126 (QIP 126), "Energy Conservation in Hot Mix Asphalt Production"
- Environmental Council 101 (EC-101),

"Best Management Practices to Minimize Emissions During HMA Construction"

- "The Fundamentals of the Operation and Maintenance of the Exhaust Gas System in a Hot Mix Asphalt Facility" (IS-52)

Done

Summary of WMA:

www.fhwa.dot.gov/pavement/asphalt/wma.cfm

🧭 Warm Mix Asphalt Technologies and Research - Asphalt - Pavements - FHWA - Windows Internet Explorer 📃 🖻 🔀							
COO - O http://www.fhwa.dot.go							
Elle Edit View Favorites Iools Help							
😭 🏟 👌 Warm Mix Asphalt Technologi	and Research - Asph				🟠 🔹 🔝 🔹 🖶 🔹 📴 Page 🗸 🍈 T <u>o</u> ols 🗸 🎽		
Search Feedback							
Pavements							
Research Design Cons	uction Preservation Maintenance	Management	Rehabilitation				
				<u>FHWA</u> > <u>Engi</u>	ineering > <u>Pavements</u> > <u>Asphalt</u> > Warm Mix Asphalt		
Design and Analysis	Warm Mix Asphalt Technolog	ies and Resea	rch		Events		
Materials and Construction European countries are using technologies that appear to allow a reduction in the temperatures at which asphalt mixes are produced and placed. More Information Technology These technologies have been labeled Warm Mix Asphalt (WMA). The immediate benefit to producing WMA is the reduction in energy consumption required by burning fuels to heat traditional hot mix asphalt (HMA) to temperatures in excess of 300° F at the production plant. These high production temperatures are needed to allow the asphalt binder to become viscous enough to completely coat the aggregate in the HMA, have good workability ouring laying and compaction, and durability during traffic exposure. With the decreased production temperature comes the additional benefit of reduced emissions from burning fuels, fumes, and odors generated at the plant and the paving site. More Information Construction and Materials Quality There are three technologies that have been developed and used in European countries to produce WMA: Contact Assurance 1 The addition of a curthetic zoolite called Apple Mit® (wing mixing at the plant to produce to produce WMA: Matthew Corrigan					Commed Asphalt Pavement Publications Warm Mix Asphalt: European Practice Contact Matthew Corrigan Office of Pavement Technology 202-366-1549		
	need further investigation and research in o	der to validate their exp	pected performance an		8		

I THE THE PARTY

QUICK FINDS

WMA European Practice Report

WMA at NAPA Annual Meeting

WMA Best Practices

December TWG Meeting

WMA Test Frameworks

warmmixasphalt.com

Q. Which project is which?

A: Hot-Mix Asphalt

B: Warm Mix Asphalt

Project No. 1

Project No. 2

• I.C. = I.P.

Improved Compaction = Improved Performance

- F.E.W. key benefits
 - Fuel
 - Emissions
 - Worker Comfort

Your Questions

Use of Warm Mix Asphalt at NYSDOT

Christopher Euler New York State Dept. of Transportation Materials Bureau

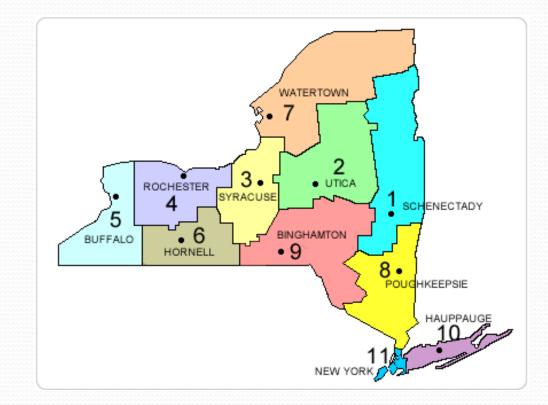
Overview

- History of WMA at NYSDOT.
- Technologies used on NYSDOT Projects.
- What did we learn? The good and the bad.
- Current and Future Use of WMA at NYSDOT.

History of WMA at NYSDOT

• Tracking national efforts since 2004.

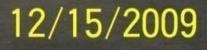
 Trial sections being placed on NYSDOT roads since 2006


History of WMA at NYSDOT

- From 2006 through 2009.
 - Over 50,000 tons of WMA was placed on various NYSDOT projects.
 - These trial sections were proposed by the contractor/producer, and were allowed to be placed at no additional cost to the state.
 - These trial sections ranged in size from 400 tons to over 3000 tons.

History of WMA at NYSDOT

 Placed in 5 different Regions.
 Majority of this work has been done in Region 3.


5 Different
 Technologies were
 used.

Technologies used on NYSDOT Projects

- Region 1 (Albany)
 - September 2008 WMA using the Low Emission Asphalt (LEA) technology was placed on State Route 43 in the town of Stephentown.
 - December 2009 Evotherm technology was used as a compaction aid on the approach ramp for the Crown Point Bridge ferry service.

Lake Champlain Bridge Crown Point, NY

Lake Champlain Bridge Crown Point, NY

Technologies used on NYSDOT

Projects

- Region 3 (Syracuse)
 - September 2006
 - WMA using the Low Emission Asphalt (LEA) technology was placed on State Route 11 just south of Cortland.
 - WMA using Sasobit technology was placed on State Route 80 in the town Tully.
 - 2007 Almost 35,000 tons of WMA using the LEA technology was placed on various State roads in Cortland County.
 - October 2009 WMA using the Terex technology was placed on State Route 104B near the city of Mexico.

State Route 104B Mexico, NY

Technologies used on NYSDOT Projects

• **Region 5 (Buffalo)** - July 2009 – WMA using Hypertherm technology was placed on State Route 93 in Lockport.

Technologies used on NYSDOT Projects

- **Region 7 (Watertown)** June 2008 WMA using Sasobit technology was placed on State Route 12 in the town of Clayton.
- Region 9 (Binghamton) July/August 2009 WMA using the LEA technology was placed on State Route 23 in the town of Pitcher.

WMA at other agencies in New York State

- NYCDOT Has used various products on several different projects.
- NYSTA Has used various technologies.
- Various Counties have placed WMA trial sections, including Albany, Washington, Jefferson, Erie, Westchester, Cortland, and others.

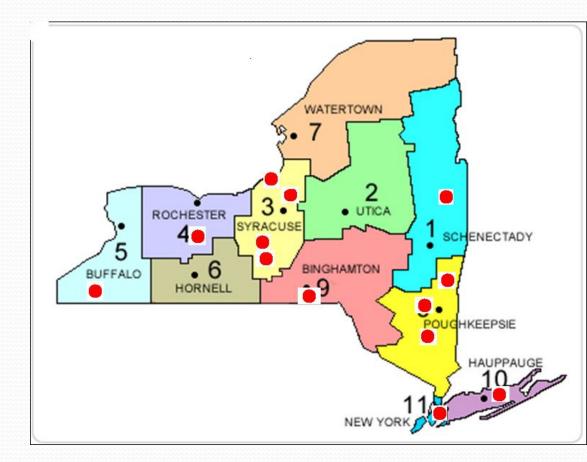
What did we learn? The good.

- Early age rutting has not been an issue.
- Moisture susceptibility has not been an issue.
 - WMA mixtures meet existing specification requirements.
- Construction practices similar to conventional mixtures.
 - Handwork has not been a big issue.
 - Good pavement densities have been achieved using the same or less effort.

What did we learn? The bad.

- Every technology is different one size does not fit all.
 - Laboratory testing modification differ with technology.
 - Test sample conditioning varies.
 - Sample compaction temperature varies.
 - Some technologies require plant modification.
- Late Season paving may require 300°+ F temperatures.

Current and Future Use of WMA at NYSDOT


 In conjunction with other New York Agencies and Industry partners, we have developed

• Specification.

- Technology Approval Process.
 - Currently 6 Approved Technologies.
 - NEAUPG has adopted our Approval Process for the Northeast States.

Current and Future Use of WMA at NYSDOT

- 2010
 - 11 projects went out for bid.
 - >30 million ESAL level.
 - 3 courses of WMA over Rubbilized PCC.
 - 2 projects with WMA substitution.

Current and Future Use of WMA at NYSDOT

- 2011
 - Continue with Projects from 2010.
 - Put out more projects for bid.
 - WMA substitutions on selected projects.
- Future
 - Long term implementation looks very promising.
 - A specification that allows the Contractor/Mix Producer to use approved technologies at their discretion.

Christopher Euler New York State Dept. of Trans. Materials Bureau Phone 518-457-4581 ceuler@dot.state.ny.us

Warming Up To WMA Michigan Department of Transportation

Curtis Bleech HMA Operations Engineer June 1 2011

EVIDO

MDOT Mission

"Providing the highest quality integrated transportation services for economic benefit and improved quality of life."

Items to Cover

(ANDO)

- History
- FHWA's "Every Day Counts"
- Warm Mix Asphalt (WMA)
- Mix Design

MDOT Moving Forward

History: M-95

- 2006 Contractor Requested to Use WMA
- Payne Dolan NCAT Sponsored
- Superpave 5E3 Control & Pilot
- Sasobit Additive
- Original Mix Design Used
- Typical Construction Benefits
- Similar Perf. as the Control to Date

Every Day Counts (EDC)

- FHWA Initiative
- http://www.fhwa.dot.gov/everydaycounts/
- EDC is designed to identify and deploy innovation aimed at shortening project delivery, enhancing the safety of our roadways, and protecting the environment.

5 Technologies Identified

- Adaptive Signal Control
- Geosynthetic Reinforced Soil Integration Bridge System
- Prefabricated Bridge
- Safety Edge
- Warm Mix Asphalt (WMA)

WMA: Proven technology

- Improve compaction that improves pavement performance.
- Reduce fuel or energy usage.
- Improve worker comfort by reducing exposure to higher temperatures, fuel emissions, fumes, and odors.
- In addition, WMA technologies allow asphalt mixtures to be hauled longer distances and can extend the paving season due to the ability to maintain workability at lower temperatures.
- The proper use of WMA may result in reduced overall paving costs.

WMA: Compaction Aid

- Better compaction improves
 performance
- Proper compaction is critical to wellperforming pavements. One indication of proper compaction is the final density of the asphalt pavement. WMA is a compaction tool that can help achieve more uniform density and improve pavement performance

FHWA & WMA

- Action Plan for Michigan EDC Initiative
- The goal is to evaluate the use of WMA foaming technology, working to develop specifications and pilot WMA for evaluation and demonstration here in Michigan
- The expected outcome is for Michigan to develop a WMA permissive specification to be used on two pilot projects for evaluation and demonstration. *Currently MDOT is Pursuing 3 WMA Projects for 2011 Letting.*

WMA

Although there are many factors driving the development and implementation of WMA technologies globally, in order for WMA to succeed in the US, WMA pavements must have equal or better performance when compared to traditional HMA

pavements.

WMA Specification

- Standard Superpave Mix Design
- Normal Mix Design Procedures
- Water Injection or Water Additive
- Informational Testing
- Gyro Temperature Based on Binder Suppliers Recommendation

MDOT Moving Forward

- Let 3 Projects in 2011 Permissive, Mandatory & Alternate Bid
- Water Injection or Water Additive
- Monitor & Review Performance
- Develop Use Policy

The End

EVIDOT

Warming up to WMA: Applications by Northern States June 1, 20011

Why WMA?

Potential Advantages** **Energy Savings Decreased Emissions** Visible and Non-Visible **Decreased Fumes Decreased Binder Ageing Extended Paving Season Compaction Aid Increased RAP usage**

Advantages will only be realized by optimizing production operations and utilizing best practices

Why Warm Mix?

Bearable

Reduced Emissions

Social

Better Working Conditions

Viable

Fuel and Energy Savings

Environment

Reduced Emissions

Higher RAP %

Higher RAP % Extend Paving Season Fuel and Energy Savings Economic

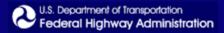
Sustainability

Improved Field Compaction Thick Lift Compaction

**FHWA does not endorse any particular proprietary product or technology.

Technology Overview**

Static Inline Vortex Asphalt Blender
Ad-RAP (ECOBIT) sonneborn


Lake Asphalt of Trinidad and Tobago

Iterlow-T & HyperTherm

TLA-X

More to come ... Many other technologies are also used Internationally.

**FHWA does not endorse any particular proprietary product or technology.

2006 Warm Mix Asphalt Open House June 19 & 20, 2006 Comfort Suites Milwaukee Airport 6362 South 13th Street, Oak Creek, WI 53154, (414) 570-3333

AGENDA

Transportation-Southeast Region. Monday, June 19, 2006 Pavne & Dolan Incorporated, the 9:00-10:00 Asphalt Pavement Alliance and Registration and continental breakthe Wisconsin Asphalt Pavement fast Association are hosting an open house on June 19 & 20, 2006, on 10:00 - 11:30Warm Mix Asphalt. This two Welcoming Remarks day session will include class Lenny Makowski Wisconsin DOT time both mornings on Warm Warm Mix Asphalt Overview Mix Asphalt, its potential bene-Brian Prowell, NCAT fits, applications and future. The Additives To Make Warm Mix: afternoon of June 19th, attendees Sasobit & Evotherm will visit Pavne & Dolan's plant to observe the production of the The Highway 100 (Ryan Road) Warm Mix Asphalt using Saso-Project bit. Attendees will then visit the

Wisconsin DOT & Payne & Dolan

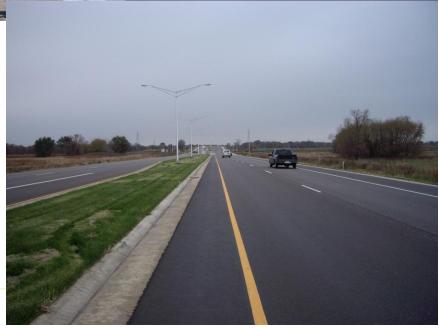
REGISTRATION

Registration is free for this event. You can register online at www.wispave.org, or by calling the WAPA office at 608-255-3114 by June 9, 2006.

HOTEL

Rooms are available on June 18th & 19th at the Comfort Suites Milwaukee Airport where the classroom session will take place. The rate for these rooms is \$94 per night . Refer to the Warm Mix meeting when making your reservation. To ensure you get the special room rate, call the hotel at (414) 570-1111 by June 4.

If you have questions or need more information, please feel free to contact:


enny Makowski, Wisconsin Department of Transportation 262) 548-5618 or leonard.makowski@dot.state.wi.us

Pat Goss, Wisconsin Asphalt Pavement Association (608) 255-3114 or pat@wispave.org

11:45 Board bus to visit the plant & project (Box lunches will be provided) 2:30 Return to the hotel Tuesday, June 20, 2006 8:00-8:30

Registration and Continental Breakfast 8:30-9:15 Remarks and Overview 9:20 Board bus to visit the plant and project 12:00 Return to the hotel

job site and observe the Warm Mix on the project. The second

day will include another trip to

Warm Mix Asphalt using

more information.

the plant following the class time to observe the production of

Evotherm and a visit to the pro-

ject. Visit www.wispave.org for

Where is WisDOT Going with Warm Mix Asphalt?

Current Status

- Development of specification, along with needed guidance, currently being developed by HMA Technical
 - Team/Subcommittee
- Draft language currently being reviewed for inclusion in 2012 Standard Specifications
- May be implemented sooner through use of ASP-6
- Current draft allows use of WMA as contractor option
- Will attempt to bid several projects with both HMA and WMA in late spring.

Sect. 450:

450.2.1 Acronyms and Definitions

- (1) Interpret materials related acronyms used in sections 450 through 499 as follows:
 - WMA Warm mix asphalt
- (2) Interpret materials related definitions used in sections 450 through 499 as follows:
 - Warm mix asphalt Any asphaltic mixture that contains a warm mix additive, or utilizes a warm mix process, as part of its mixture design that has the ability to reduce the mixing and compaction temperature requirements below the typical temperatures used for that application.

Sect. 460:

460.1 Description

(1) This section describes HMA mixture design, providing and maintaining a quality management program for HMA mixtures, and constructing HMA pavement. Unless specifically indicated, all references in Sect. 460 to HMA shall also apply to WMA.

460.2 Materials

460.2.1 General

(1) Furnish a homogeneous mixture of coarse aggregate, fine aggregate, mineral filler if required, SMA stabilizer if required, recycled material if used, warm mix asphalt additive or process if used, and asphaltic material.

460.2.4 Additives

460.2.4.4 Warm Mix Asphalt Additive or Process

(1) The department will maintain an approved products list for warm mix asphalt additives and processes. The contractor may use additives or processes included in the current approved products list.

(2) Follow supplier or manufacturer recommendations for additives or processes when producing WMA mixtures.

460.5.2 HMA Pavement

460.5.2.1 General

- (2) Payment for HMA Pavement Type E-0.3, E-1, E-3, E-10, E-30, and E-30x is full compensation for providing HMA mixture designs; for preparing foundation; for furnishing, preparing, hauling, mixing, placing, and compacting mixture; for QMP testing and aggregate source testing; and for all materials, including warm mix asphalt additives or processes if used, except asphaltic materials.
- (3) Payment for HMA Pavement Type SMA, is full compensation for providing HMA mixture designs; for preparing foundation; for furnishing, preparing, hauling, mixing, placing, and compacting the mixture; for QMP testing and aggregate source testing; and for all materials including asphaltic materials and warm mix asphalt additives or processes if used; for stabilizer, hydrated lime, and liquid antistripping agent if required.

Where is WisDOT Going with Warm Mix Asphalt?

Future?

 Research through WHRP investigating dynamic modulus and flow numbers for WMA

Determine applications where it may be beneficial for us to require WMA.

Cold weather paving

The greater the differential between the mix and ambient temperatures, the faster the mix cools

WMA cools slower

WMA allows compaction at lower temperatures

- Night paving
- Long haul distances
- Paving over large amounts of crack filler

Warm Mix Asphalt

Questions????

- Changes to mix design procedures (recommendation from NCHRP 9-43)
- QMP requirements (reheat factor)
- Approval of additives/systems
- Training (HTCP, project manager, etc.)
- Warm mix vs use as a compaction aid
- Moisture concerns (foaming for late season paving?)

Warm Mix is the Future of Asphaltic Mixtures

WMA production is expected to exceed HMA production in a few years

And

Experts are predicting the WMA will comprise 90% of HMA being produced in approximately 5 years

For Further Information

Thomas Brokaw

Materials Laboratory Engineer

WisDOT Bureau of Technical Services

(608)246-7934

thomas.brokaw@dot.wi.gov

Mn/DOT's Experience with WMA

Tim Clyne Mn/DOT *MTU Webinar* June 1, 2011

Acknowledgements **Mn/DOT** John Garrity, Greg Johnson, Greg **Schneider** Roger Olson, Ed Johnson Industry Gerald Reinke, MTE Chris Miller, Hardrives Rich Wolters & Jill Thomas, MAPA

Potential Benefits of WMA Environmental Lower greenhouse gas emissions Lower fuel consumption **Operational** Better compaction More comfortable working conditions Performance Can use RAP and/or shingles with WMA Eliminates bumps in overlays Reduced binder aging – reduced cracking

WMA EXPERIENCE IN MN/DOT

Oil Gravel Early WMA by Another Name

TRB LVR Conference (1995) – Demo Project Outside MnROAD 1998 - 2000 – Five LVR Test Sections (cold, lukewarm, warm mix) over various base types

Several County Roads throughout Minnesota in 1990's

Emulsion or Cutback Asphalt
Oil Gravel Requires Solid Base
No Transverse Cracking or Rutting
Some Fatigue and Rough Ride

2008 MnROAD Construction

6 Cells on Mainline Wear and Non-Wear **12.5 mm NMAS Traffic Level 4 PG 58-34** 20% RAP from **MnROAD** No requirements for WMA technology

Mn/DOT Trunk Highway 95

Late season paving (2009)
Contractor was delayed, needed to finish paving before winter
Supplemental Agreement – Mn/DOT

- paid extra \$0.60 per ton for WMA
- □ Business as usual (mostly)
 - Good density 2nd day after going back to HMA rolling pattern

Mn/DOT District 3 and 7 Projects in 2010

First "regular" Mn/DOT projects requiring WMA

S-1 (2360) PLANT MIXED ASPHALT PAVEMENT – USE OF WARM MIX ASPHALT TECHNOLOGIES

The provisions of the attached 2360 Plant Mixed Asphalt Pavement (Gyratory Design) Specification is hereby modified as follows in order to use Warm Mix Asphalt (WMA)

All provisions for the production and placement of WMA will be the same as the conventional HMA mixtures as stipulated in 2360 Plant Mixed Asphalt Pavement (Gyratory Design) Specification except as noted below.

S-2.1 MIXTURE DESIGN

The contractor is responsible to use the same design used to produce the Hot Mix Asphalt, then modifying it to accommodate products or processes to meet the Warm mix criteria. This modification process will be limited to the same as described by the WMA Technical Working Group and found at <u>http://www.warmmixasphalt.com/WmaTechnologies.aspx</u>

Recycled Asphalt Shingles will not be allowed in any mixes on this project.

S-3.1 MIXTURE QUALITY MANAGEMENT

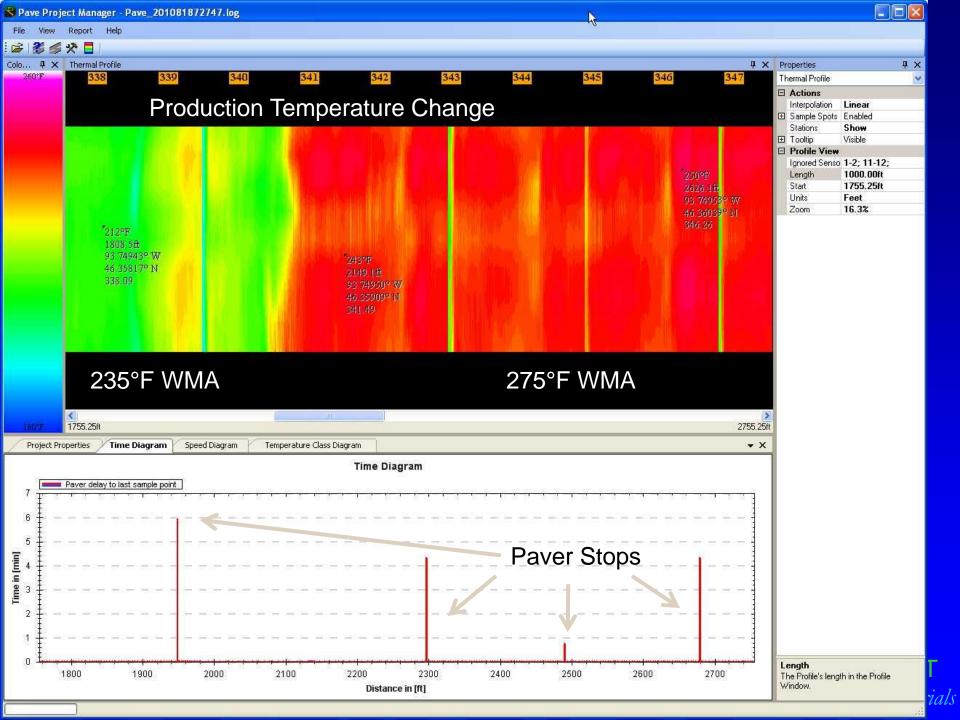
The Warm Mix Asphalt produced will not be allowed to exceed temperatures greater than 275 °F. Any WMA over that temperature will not be allowed to be used.

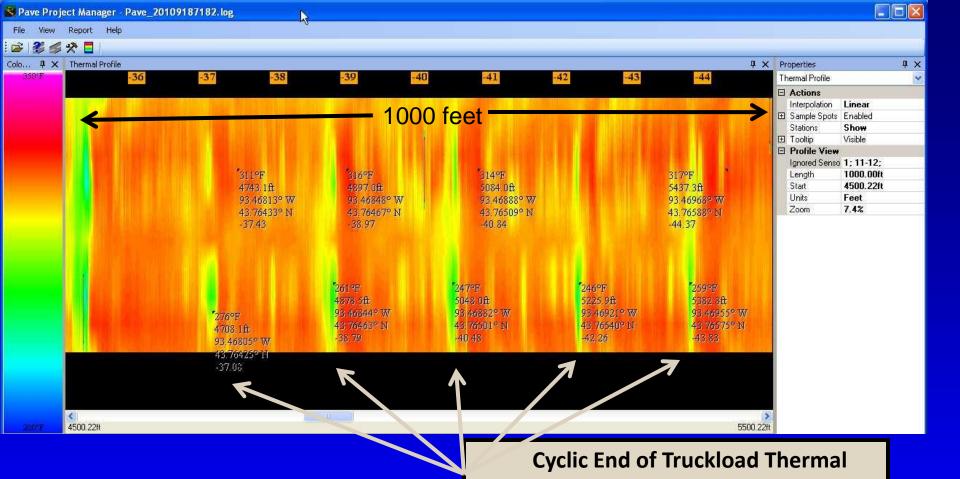
ice of Materials

REVIX / Evotherm 3G

- REVIX[™] developed by Mathy Technology & Engineering and Paragon Technical Services, Inc.
 - □ Chemical additive added at terminal or HMA plant
 - □ Requires no plant modification
 - Binder shipped from supplier with WMA chemical package already added

This technology is now marketed as Evotherm 3G


Office of Materials



Maxam AquaBlack **Bituminous Roadways** Installed on 2 local plants □ Try for a 3rd failed □ 15% of production was **WMA Knife River Duininck Brothers Central Specialties**

This picture is HMA WMA paving did not see same segregation at end of truck

Mn/DOT's Experiences

Successes

- Better compaction
- Reduced reflective cracking
- Better uniformity
- RAP & RAS used
- Comfortable working conditions
- Business as usual at plant and paver
- Becoming everyday reality

Issues

- Less compaction
- Equal reflective cracking
- Lab compaction temperature for QA
- Increased cost (at times)
- Consistent specs

Mn/DOT 2011 Bituminous Specification 2009 & 2011 Position Memos

Permissive Spec

www.dot.state.mn.us/materials/bituminous.html

Table 2360.6-C5 Mixture Temperature Control ^(C)					
Air Temperature		Compacted Mat Thickness, inches ^(A)			
°F [°C]	1 inch [25 mm]	1-1/2 inch [40 mm]	2 inch [50 mm]	≥3 inch [75 mm]	
+32-40 [0-5]		265 ^(B) [129]	255 [124]	250 [121]	
+ 41-50 [6-10]	270 ^(B) [130]	260 [127]	250 [121]	245 [118]	
+ 51-60 [11-15]	260 ^(B) [127]	255 [124]	245 [118]	240 [115]	
+ 61-70 [16-21]	250 ^(B) [121]	245 [118]	240 [115]	235 [113]	
+ 71-80 [22-27]	245 [118]	240 [115]	235 [113]	235 [113]	
+ 81-90 [28-32]	235 [113]	230 [110]	230 [110]	230 [110]	
91+[+33]	230 [110]	230 [110]	230 [110]	225 [107]	
(A) Based on approved or specified compacted lift thickness.					

(B) A minimum of one pneumatic-tire roller shall be used for intermediate rolling unless otherwise directed by the Engineer. The Engineer may specify or modify in writing (with concurrence from the Department Bituminous Engineer) a minimum laydown

ffice of Materials

temperature.

(C) Not applicable if a WMA additive or process is used.

WMA Frequently Asked Questions

Frequently Asked Questions about Warm Mix Asphalt (WMA)

Warm Mix Asphalt (WMA) is a relatively new technology in the United States, and in Minnesota in particular. The list below is not an exhaustive list of questions about warm mix, but it does try to answer some of the most common questions about this technology.

What is Warm Mix Asphalt?

Warm Mix Asphalt (WMA) is the generic term for any technology (additive or water foaming technique) added to an asphalt mixture that allows the mixing and compaction temperature to be reduced by 20 to 100°F. It allows the mix to remain workable at lower temperatures, and has potential environmental, operational, and performance benefits over traditional hot mix asphalt (HMA).

The contractor has approached us (local agencies) about substituting WMA for HMA. Should we use WMA on our project?

Mn/DOT supports the use of WMA as an alternate to HMA on most projects.

Should we pay an additional cost for warm mix?

The use of WMA may add between \$0.60 to \$2.00 per ton of mix, although as WMA becomes more commonly used that price differential should be reduced. However, agencies should not pay the additional costs if WMA is proposed after the project has already been let.

Are there any pavement performance issues with WMA?

The oldest WMA projects in the US are only 6 years old, so no long term performance data is available. Early rutting and moisture damage are potentially of concern, although no known WMA projects have shown these distresses to date.

Tim Clyne MnROAD 651-366-5473 tim.clyne@state.mn. us

Cass County Road Commission

Warm Mix Experience 2005

Why Sasobit

- Good reports from Maryland DOT
- Terminal blending did not require plant modifications
- Discovery of cross linking properties with polymer

Barron Lake Road Issues

- All Season route
- ADT 3000-4500
- % Trucks (Class 8-13) as high as 9.1 %
- Heavy truck traffic from gravel pit
- Extensive rutting and flushing
- Sections paved in 1990 and 1992
- Resurfacing would be with PG 64-28 instead of 58-28

Test Site Mix Comparison

- Cook Street to White Street
 - PG 64-28 (2.5% polymer)
 - Plant temp = 310°
 - Site temp = 285°
- White Street to Pokagon Highway
 - PG 64-28 (1% polymer + 1.5% Sasobit)
 - Added anti-strip agent
 - Plant temp = 275° (start) then lowered to 265°
 - Site Temp = 265° (start) then lowered to 260°

WMA Comparisons

- Less fuel use at plant 0.4-0.5 gal/ton
 Decrease costs and plant emissions
- Ease of mix compaction
- Decreased road closure time
 - Decreased manpower costs
 - Decreased public inconvenience
- Increased worker safety and comfort

Results Over Time

PASER Rating	HMA Mix	WMA Mix
2005 before paving	4	4-5
2006	9	9
2007	8	8
2008		8
2009	7	7
2010		7

HMA May 27, 2011

WMA May 27, 2011

Warm Mix Asphalt from Crow-Wing County's Perspective

By: Wayne Dosh

The Lower Production Temperatures of WMA May provide

 Resistance to Cracking and Reduced Thermal Cracking
 Longer Pavement Life Due to Slower Binder Aging

The Cost of Different Asphalt Cements

Historically Crow Wing County has used

- PG58-34(Polymer Modified) new pavements over gravel
- PG58-28(Natural Asphalt) overlays

Today's Economy

- PG58-34 Oil \$75 \$100 per Ton Higher
- PG58-34 Mix is \$3.50 \$5.00 per Ton Higher

Where Does WMA Fit?

 Crow-Wing Co. has used PG58-28 WMA as an Alternate to PG58-34 HMA

> Recent Bids Show PG58-28 WMA with a Surfactant to be Less Expensive then PG58-34 HMA

PG58-28 Oil Using a Surfactant was Specified for Crow-Wing Co. WMA Projects

Foaming Rejected

- Too Small of a Temperature gain to Suit Our Needs
- Waxes Rejected
 - Susceptible to Thermal Cracking

Why is the Production Temperature Important?

Estimated every 25° Reduction in Production Temperature Reduces Oxidation 50%

- Softer Asphalt (Resistant to Cracking)
- Increase in Service Life

□ Theorized Some WMA **Increases** Cold Performance by 3° to 4° WMA Utilizing **Surfactants Artificially** Aged 10 Years have **Shown Properties** Similar to 6 Month Old HMA

- All are placed over gravel.
- All used EVOTHERM 3G WMA technology.

CR 108

- Paved in August 2008
- 2913 tons of WMA
- 2000 foot HMA control strip
- 230-235° Ave.
 Production Temp.
- 2 inch mat over gravel
- \$10,000 more expensive then HMA (additional 4.7% of total
 - project cost.)

CSAH 2

- Paved in June 2009
- 21,329 tons of WMA
- 1000 foot HMA control strip
- 225-235° Ave. Production Temp.
- 3.5 inch mat over gravel
- \$53,000 savings over HMA
 - (2.2% of the total project cost)

CSAH 10

- Paved in November 2009 & May 2010
- 26,438 tons of WMA
- No HMA control strip
- 235-240° Ave. Production Temp.
- 4 inch mat over gravel
- -\$95,000 savings over HMA

(2.5% of the total project cost)

PG58-28 HMA Paved June 2009 (Recorded 02-17-11)

PG58-28 WMA Paved June 2009 (Recorded 02-17-11)

Other Observations

Cold Weather Paving

Warm Weather Paving

Densities

Moisture

Higher Effective Asphalt Content

Basic Lifecycle Cost Analysis

- Based on CSAH 10 bid prices
 - Assuming PG 58-28 WMA performs equal to PG 58-34 HMA Crow Wing county would see a saving of \$250,000 a year.

Conclusions

- The Initial Rate of Oxidation is Less for WMA
 Which Should Result in ...
 - Longer service Life
 - Slower Binder Aging Process
- Crow-Wing County Plans to place an additional 3,500 tons of WMA this summer.

Thank You